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ABSTRACT
Many real world graphs contain time domain information. Tempo-
ral Graph Neural Networks capture temporal information as well
as structural and contextual information in the generated dynamic
node embeddings. Researchers have shown that these embeddings
achieve state-of-the-art performance in many different tasks. In this
work, we propose TGL, a unified framework for large-scale offline
Temporal Graph Neural Network training where users can compose
various Temporal Graph Neural Networks with simple configura-
tion files. TGL comprises five main components, a temporal sampler,
a mailbox, a node memory module, a memory updater, and a mes-
sage passing engine. We design a Temporal-CSR data structure and
a parallel sampler to efficiently sample temporal neighbors to form
training mini-batches. We propose a novel random chunk schedul-
ing technique that mitigates the problem of obsolete node memory
when training with a large batch size. To address the limitations
of current TGNNs only being evaluated on small-scale datasets,
we introduce two large-scale real-world datasets with 0.2 and 1.3
billion temporal edges. We evaluate the performance of TGL on four
small-scale datasets with a single GPU and the two large datasets
with multiple GPUs for both link prediction and node classification
tasks. We compare TGL with the open-sourced code of five meth-
ods and show that TGL achieves similar or better accuracy with an
average of 13× speedup. Our temporal parallel sampler achieves an
average of 173× speedup on a multi-core CPU compared with the
baselines. On a 4-GPU machine, TGL can train one epoch of more
than one billion temporal edges within 1-10 hours. To the best of
our knowledge, this is the first work that proposes a general frame-
work for large-scale Temporal Graph Neural Networks training on
multiple GPUs.
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1 INTRODUCTION
Graph Neural Networks (GNNs) have proven to be powerful and
reliable method in representation learning on static graphs and
are widely used in many academic and industrial problems. There
exist well-developed libraries like DGL [22] and PyG [2] that allow
users to quickly and efficiently implement GNN variants for static
graphs and deploy them to CPUs, GPUs, or even distributed systems.
There are also multiple benchmark dataset collections like OGB
[4, 6] that provide large-scale and wide-ranging datasets to evaluate
the performance of GNN variants for static graphs.

However, many real-world graphs are dynamic. For example, in
a social network new users join over time and users interact with
each other on posts and send messages. In a knowledge graph, new
events appear and are only valid for specific periods of time. The
dynamics in the user-item graph reveal important information in
identifying abusive behaviors [20]. To capture the evolving nature
on dynamic graphs, recently, researchers [1, 13, 15, 17] have de-
veloped Temporal Graph Neural Networks (TGNNs) which jointly
learn the temporal, structural, and contextual relationships on dy-
namic graphs. Like static GNNs, TGNNs encode graph information
at a given time into dynamic node embeddings. With the addi-
tional temporal information, TGNNs outperform static GNNs on
link prediction tasks, dynamic node classification tasks, and many
other tasks on dynamic graphs. These works on temporal graph
representation learning are developed using different frameworks
with different levels of optimizations and parallelization and are
evaluated on small dynamic graphs which only contain less than
ten thousand nodes and one million edges.

Many real-world dynamic graphs, such as social network graphs
and knowledge graphs, usually have millions of nodes and billions
of edges. It is challenging to scale TGNN training to large graphs for
multiple reasons. First, the additional temporal dependency requires
training to be done chronologically. TGNNs also use more expen-
sive neighbor samplers which select temporal neighbors based on
the timestamps of the interactions between nodes. Moreover, dif-
ferent TGNNs capture the temporal information using different
strategies like node memory and snapshot. Existing graph deep
learning frameworks like DGL and PyG do not provide efficient
data structure, sampler, and message passing primitive for dynamic
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graphs, which requires users to implement extra modules to com-
pose TGNN models. In addition, it is also challenging to design an
efficient and versatile framework that is capable of unifying the
different schemes of different TGNN variants. Recently, PyTorch
Geometric Temporal (PyGT) [16] attempted to design a library for
dynamic and temporal geometric deep learning on top of PyG. How-
ever, PyGT only supports discrete time snapshot-based method and
full batch training on small-scale spatial-temporal graphs.

To fill these gaps, we develop TGL, the first general framework
for large-scale offline TGNNs training. In this work, we focus on the
widely used edge-timestamped dynamic graphs where each edge
is associated with a timestamp. TGL supports all TGNN variants
that aggregate and refine information from maintained states or
features of selected temporal neighbors. The survey [9] categorizes
dynamic graphs into Continuous Time Dynamic Graphs (CTDGs)
and Discrete Time Dynamic Graphs (DTDGs) based on the contin-
uous or discrete quantity of the timestamps. However, we believe
that DTDGs are essentially CTDGs with granulated timestamps.
Hence, we design TGL to support the more general CTDGs and
evaluate TGL by comparing the performance of TGNN variants
targeting both CTDGs and DTDGs in the experiments. Our main
contributions are

• We design a unified framework that supports efficient train-
ing on most TGNN architectures by studying the character-
istic of a diverse set of TGNNs variants including snapshot-
based TGNNs [13, 17], time encoding-based TGNNs [1, 15,
23], and memory-based TGNNs [10, 15, 18, 23].
• We design a CSR-based data structure for rapid access to
temporal neighbors and a parallel sampler that support dif-
ferent temporal neighbor sampling algorithms. Our parallel
sampler can quickly locate the temporal edges to sample
from by maintaining auxiliary pointer arrays.
• We propose a novel random chunk scheduling technique
that overcomes the deprivation of intra-dependency when
training with a large batch size for the methods using node
memory, which enables multi-GPU training on large-scale
dynamic graphs.
• To better compare the performance of various TGNN meth-
ods, we introduce two large-scale datasets with billions of
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Figure 1: Accuracy and per epoch training time of TGL com-
paredwith the baselines on theWikipedia dataset (600 batch
size).

Table 1: Strategies used by various TGNN variants.

[13] [17] [10] [18] [17] [1] [15] [23]
snapshot ✓ ✓ ✓

time encoding ✓ ✓ ✓

memory ✓ ✓ ✓ ✓

edges – the GDELT and MAG datasets which represent dy-
namic graphs with long time duration and dynamic graphs
with larger number of nodes.
• We compare the performance of TGL with the baseline open-
sourced codes on two small-scale datasets. TGL achieves
similar or higher accuracy for all baseline methods with an
average speedup of 13× as shown in Figure 1. On the large-
scale datasets, TGL achieves an average of 2.3× speedup
when using 4 GPUs.

2 TEMPORAL GRAPH NEURAL NETWORKS
TGNNs generate dynamic node embeddings by adding components
like time encoder and node memory in the message passing flow or
combining information frommultiple consecutive graph snapshots..
To capture the additional temporal dependencies, TGNNs usually
process the neighbor information by three methods: 1) group the
neighbors in the past according to their time and learn sequences
from the groups (snapshot-based TGNNs), 2) add additional time
encoding to each past neighbor, and 3) maintain node memory
which summarizes the current state of each node (memory-based
TGNNs). Table 1 shows different strategies used by different TGNN
variants. Note that some TGNNs [15, 23] use combinations of mul-
tiple strategies to intensify the temporal relationships, while some
other TGNNs only rely on a single strategy. For example, pure
memory TGNNs [10, 18, 23] directly use the node memory as the
dynamic node embeddings, potentially with complex COMB and
UPDT function to update node memory. For example, in APAN
[23], the mails are delivered to the mailboxes of hop-1 neighbors
and the COMB function applies attention mechanism to update the
node memory. After studying the architecture of different TGNNs,
we identify three components that form a unified representation
for most TGNN variants – the node memory, the attention aggrega-
tor, and the temporal sampler. For snapshot-based TGNNs [13, 17],
each snapshot is treated independently while the output of each
snapshot is combined to produce the final node embeddings.

Table 2: Notation used in this paper

Symbol Description
𝑢, 𝑣, 𝑖, 𝑗 Nodes in dynamic graphs

𝑒 Edges in dynamic graphs
𝒗𝑣, 𝒆𝑖 𝑗 Node feature of 𝑣 and edge feature of edge 𝑖 𝑗
N(𝑣) Set of past neighbors of node 𝑣

𝑚𝑢𝑣
𝑒 ,𝑚𝑣𝑢

𝑒 Mails generated at the source and destination nodes
𝒔𝑣 Node memory of node 𝑣
𝑡−𝑣 Time when 𝒔𝑣 is updated
Φ(·) Time encoder



2.1 Node Memory
For nodes with different history lengths, a fixed number of temporal
neighbors may not provide enough information to generate the
dynamic node embedding at the current state. To address this issue,
many works [10, 15, 18, 23] use node memory to summarize the
history of the nodes in the past. Later when this node is referenced
as a temporal neighbor, its node memory serves as complimentary
information and is combined with the node features as the input
node features.

To maintain the node memory of each node, when an event
indicates the appearing of a new edge, a sequence model (RNN or
GRU) is used to update the corresponding node memory. If there
is a new edge connecting from node 𝑢 to node 𝑣 at the current
timestamp 𝑡 , we generate two mails𝑚𝑢𝑣

𝑒 and𝑚𝑣𝑢
𝑒

𝑚𝑢𝑣
𝑒 =

(︁
𝒔𝑢 | |𝒔𝑣 | |Φ(𝑡 − 𝑡−𝑣 ) | |𝒆𝑢𝑣

)︁
(1)

𝑚𝑣𝑢
𝑒 =

(︁
𝒔𝑣 | |𝒔𝑢 | |Φ(𝑡 − 𝑡−𝑣 ) | |𝒆𝑢𝑣

)︁
. (2)

The time encoder Φ [1] encodes the time interval Δ𝑡 = 𝑡 − 𝑡−𝑣 into
vector

Φ(Δ𝑡) = cos(𝝎Δ𝑡 + 𝝓), (3)
where 𝝎 and 𝝓 are two learnable vectors. The node memory is then
updated by

𝒔𝑣 = UPDT
(︂
𝒔𝑣,COMB

(︂
𝑚
𝑖 𝑗
𝑒 |𝑣 ∈ N (𝑖) ∪ N ( 𝑗)

)︂)︂
, (4)

where UPDT is the RNN or GRU memory updater, and COMB is
the combiner of all related neighbor input mails. The mails are
delivered to the neighbors of the source and destination nodes.

When performing GNN message passing, the node memory is
combined with the original node features 𝒗𝑣 to serve as the new
node features.

𝒗 ′𝑣 = 𝒔𝑣 +MLP(𝒗𝑣) . (5)

2.2 Attention Aggregator
TGNNs adopt the attention mechanism from Transformer [19] to
gather and aggregate information from temporal neighbors. The
attention aggregation of node 𝑢 is computed by the queries, keys,
and values from its hop-1 temporal neighbors 𝑣 ∈ N (𝑣).

2.3 Temporal Sampler
To ensure each node can access the relevant information from
its supporting nodes or the mails are delivered to neighbor nodes,
TGNNs need to consider the edge timestampswhen sampling. There
are two major sampling strategies, uniform sampling where neigh-
bors in the past are sampled uniformly as supporting nodes and
most-recent sampling where only the most recent neighbors are
sampled. Note that in a dynamic graph, two nodes can have multi-
ple edges at different timestamps. These nodes can also be sampled
multiple times as supporting nodes with different timestamps.

3 TGL
In this section, we present TGL – a general framework for efficient
TGNNs training on large-scale dynamic graphs.

Figure 2 shows the overview of the training of TGL on a single
GPU.We split the modules with learnable and non-learnable param-
eters to store on GPU and CPU respectively. For datasets where the
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Figure 2: Overview (forward path) of the proposed frame-
work. 1○ Sample neighbors for the root nodes with times-
tamps in the current mini-batch. 2○ Lookup the memory
and the mailbox for the supporting nodes. 3○ Transfer the
inputs to GPU and update the memory. 4○ Performmessage
passing using the updated memory as input. 5○ Compute
loss with the generated temporal embeddings. 6○Update the
memory and the mailbox for next mini-batch.

GPUmemory is sufficient to hold all information, the non-learnable
modules can also be stored and computed on GPU to speedup the
training. To be compatible with different TGNN variants, we design
five general components: the temporal sampler, the mailbox, the
node memory, the memory updater, and the attention aggregator.
For snapshot-based TGNNs, the temporal sampler would sample
in each snapshot individually. Note that in TGL, we do not treat
graph snapshots as static windows. Instead, the graph snapshots are
dynamically created according to the timestamp of the target nodes.
This allows the snapshot-based TGNNs to generate dynamic node
embeddings at any timestamps, instead of a constant embedding in
a static snapshot.

TGNNs are usually self-supervised by the temporal edges, be-
cause it is hard to get dynamic graphs with enough dynamic node la-
bels to supervise the training. Training with temporal edges causes
the “information leak” problem where the edges to predict are al-
ready given to the models as input. The information leak problem in
attention aggregator can be simply avoided by not sampling along
the edges to predict. In node memory, the information leak problem
is eliminated by caching the input from previous mini-batches [15],
which enables the node memory to receive gradients. In TGL, we
adopt the mailbox module [23] to store a fixed number of most re-
cent mails for updating the node memory. When a new interaction
appears, we first update the node memory of the involved nodes
with the cached messages in the mailbox. The messages in the mail-
box are updated after the dynamic node embeddings are computed.
Note that to keep the node memory consistent, the same updating
scheme is used at inference when updating the node memory is
not necessary.



Algorithm 1: Parallel Temporal Sampler
Data: sorted T-CSR 𝐺

Input: root nodes 𝒏 with timestamp 𝒕𝒏 , number of layer 𝐿,
number of neighbors in each layer 𝑘𝑙 , number of
snapshots 𝑆 , snapshot length 𝑡𝑠

Output: DGL MFGs
1 advance the pointer of 𝒏 to 𝒕𝒏 in 𝑝𝑡 (𝑆 + 1) in parallel;
2 for l in 0..L do
3 for s in 0..S do
4 if 𝑙 ≥ 0 then
5 set 𝒏 and 𝒕𝒏 to sampled neighbors in 𝑙 − 1;
6 end
7 if 𝑙 == 0 then
8 advance the pointer of 𝒏 to 𝒕𝒏 − 𝑠 ∗ 𝑡𝑠 in

𝑝𝑡 (𝑆 − 𝑠 − 1) in parallel;
9 else
10 binary search in the snapshots 𝑆𝑠 for each node

𝑛 ∈ 𝒏 in parallel;
11 end
12 foreach 𝑛 ∈ 𝒏 in parallel do
13 sample 𝑘𝑙 neighbors within the snapshot 𝑆𝑠 ;
14 end
15 generate DGL MFGs;
16 end
17 end

3.1 Parallel Temporal Sampler
Sampling neighbors on dynamic graphs is complex as the times-
tamps of the neighbors need to be considered. In the offline training
process, TGL stores the entire dynamic graph statically where the
timestamps are attached to the nodes and edges. For snapshot-based
TGNNs, the temporal samplers need to identify the snapshots be-
fore sampling. Other TGNNs that either samples uniformly from
all past neighbors or sample most recent neighbors can be treated
as single snapshot TGNNs with infinite snapshot length. Their
temporal samplers also needs to identify the candidate edges and
their sampling probabilities. Hence, it is important to design a data
structure that can rapidly identifies the dynamic candidate set of
temporal neighbors to sample from. Combined with the fact that
the mini-batches in TGNNs training follow chronological order
(have non-decreasing timestamps), we propose the Temporal-CSR
(T-CSR) data structure.
The T-CSR Data Structure Besides the indptr and indices array
of the CSR data structure, for each node, T-CSR sorts the outgoing
edges according to their timestamps as shown in Figure 3. After
sorting all the edges in a dynamic graph, we assign edge ids ac-
cording to their position (indexes) in the sorted indices and times
arrays. In addition, for a TGNN model with 𝑛 snapshots, we main-
tain 𝑛+1 pointers for each node that point at the first and last edges
in these snapshots. Formally, the T-CSR data structure is defined by
an indptr array of size |𝑉 | + 1, an indices array and a time array of
size |𝐸 |, and 𝑛 + 1 pointers array of size |𝑉 |, which leads to a total
space complexity of O(2|𝐸 | + (𝑛 + 2) |𝑉 |). For dynamic graphs with
inserting, updating, and deletion of edges and nodes, the T-CSR data

𝑒1, 𝑡1
𝑒 2
, 𝑡 2

𝑒3 , 𝑡3
𝑒4 , 𝑡4

𝑣1
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· · · 𝑣1 𝑣2 · · ·indptr

indices · · · 𝑣2 𝑣3 𝑣4 𝑣5 · · ·

times · · · 𝑡1 𝑡2 𝑡3 𝑡4 · · ·

𝑝𝑡2 𝑝𝑡1 𝑝𝑡0

𝑆1 𝑆0

Figure 3: T-CSR representation of the node 𝑣1 with four tem-
poral edges 𝑒1 to 𝑒4 with timestamps 𝑡1 to 𝑡4 connected to
neighbors 𝑣1 to 𝑣4. The indices and times arrays are sorted
by the edge timestamps and indexed by the edge ids 𝑒1 to 𝑒4.
𝑆0 and 𝑆1 denote two snapshots of the temporal graph, des-
ignated by the pointers 𝑝𝑡0 to 𝑝𝑡2.

structure can treat them as standalone graph events and allocate
their own entries in the indices and times array.
Sampling With the help of the T-CSR data structure, we can
quickly choose an edge between two pointers uniformly, or pick
edges closest to the end pointer for the most recent neighbors.
These pointers are stored in arrays and takes an additional O(𝑛 |𝑉 |)
storage and O(|𝐸 |) computation complexity to maintain in one
epoch, but allows the sampler to identify candidate edges in O(1).
By contrast, performing binary search would lead to O(|𝐸 | log |𝐸 |)
computation complexity to identify candidate edges in one epoch.
Note that some TGNNs like TGAT [1] use the timestamp of the
neighbors to sample multi-hop temporal neighbors, instead of using
the timestamp of the root nodes. For these TGNNs, the proposed
pointer only works for the hop-1 neighbors. Since the edges are
sorted in T-CSR, we can still to use binary search to quickly find
out the candidate edges before sampling.
Parallel Sampling To leverage the multi-core CPU resources in
the host machine, we exploit data parallelism to sample on the root
nodes in a mini-batch as shown in Algorithm 1. In each mini-batch,
the target nodes are evenly distributed to each thread to update
the pointers and sample the neighbors. Note that when updating
the pointers in parallel, it is possible that multiple threads share
the same target nodes with different timestamps, which causes
race conditions. We add fine-grained locks to each node to avoid
the pointers being advanced multiple times under such conditions.
When same target nodes at different timestamp appears multiple
time in one mini-batch, it is also possible that the target nodes with
small timestamps sample temporal neighbors from the future. We
prevent information leak in such situation by strictly enforcing
that the sample temporal neighbors have smaller timestamps than
the root nodes. After each thread finishes sampling in each mini-
batch, we generate a DGL Message Flow Graph (MFG) for each
layer [22] which contains all the input data needed in the forward
and backward propagation and pass it to the trainer.



Algorithm 2: Random Chunk Scheduling
1 Data: training edges 𝐸, sorted T-CSR 𝐺 , TGNN model𝑀
Input: batch size 𝑏𝑠 , chunk size 𝑐𝑠 , training epochs 𝐸

2 for e in 0..E do
3 𝑒𝑠 ← rand(0, 𝑏𝑠/𝑐𝑠) ∗ 𝑏𝑠 ;
4 𝑒𝑒 ← 𝑒𝑠 + 𝑏𝑠 ;
5 while 𝑒𝑒 ≤ |𝐸 | do
6 sample MFGs from 𝐸 (𝑒𝑠 ..𝑒𝑒 );
7 train for one iteration with the current MFG;
8 𝑒𝑠 ← 𝑒𝑠 + 𝑏𝑠 ;
9 𝑒𝑒 ← 𝑒𝑒 + 𝑏𝑠;

10 end
11 end

3.2 Parallel Training
In order to scale static GNN training to large graphs, recent works
[21, 24] increase the batch size to take advantage of the massive
data parallelism provided by multi-GPU servers or GPU clusters.
However, training TGNN with a large batch size suffers from the
intrinsic temporal dependency in the node memory. Defining the
dependent edges as pairs of training edges who share common
supporting nodes in the source or destination nodes, we can divide
the edge dependencies into two types:
• Intra-batch dependencies refer to the dependent edges in
the same mini-batch. In TGNN training, the intra-batch de-
pendencies are discarded in order to process the edges in a
mini-batch in parallel.
• Inter-batch dependencies refer to the dependent edges in
different mini-batches. TGNNs take these inter-batch rela-
tions into account by updating the node memory and the
mailbox after each mini-batch.

Since the total number of intra- and inter-batch dependencies is
constant on one dynamic graph, training with a larger batch size
discards more intra-batch dependencies and learns less inter-batch
dependencies which leads to lower accuracy. To mitigate this issue,
we propose a random chunk scheduling technique that divides the
training edges into chunks and randomly picks one chunk as the
starting point in each training epoch, which allows close chunks to
be arranged in different mini-batches in different training epochs,
hence learning more inter-batch dependencies. The random chunk
training algorithm is shown in Algorithm 11.

To train TGL on multiple GPUs, we adopt the synchronized
training setup of multiple GPUs on a single node. On 𝑛 GPUs, we
launch 𝑛 training processes and one sampling process with inter-
process communication protocols.

4 EXPERIMENTS
We perform detailed experiments to evaluate the performance of
TGL. We implement TGL using PyTorch 1.8.1 [14] and DGL 0.6.1
[22]. The parallel temporal sampler is impletmented using C++ and
integrated to the Python training script using PyBind11 [7]. The
open-sourced code of TGL could be found at https://github.com/
tedzhouhk/TGL.

We select five representative TGNN variants as the baseline
methods and evaluate their performance in TGL.
• JODIE [10] is a pure memory-based TGNN method that uses
RNN to update the node memory by the node messages. We
use the open-sourced code implemented as a baseline in TGN
[15] as the baseline code.
• DySAT [17] is a snapshot-based TGNN that uses RNN to
combine the node embeddings from different snapshots.
• TGAT [1] is a attention-based TGNN that gathers temporal
information by the attention aggregator.
• TGN [15] is amemory-based TGNN that applies the attention
aggregator on the node memory updated by GRU with the
node messages.
• APAN [23] is a pure memory-based TGNN method that uses
attention aggregator to update the node memory by the node
messages delivered to the multi-hop neighbors.

For fair comparison, we set the receptive field to be 2-hop and fix
the number of neighbors to sampler per hop at 10. The size of the
mailbox is set to be 10 mails in APANwhile 1 mail in other methods.
For the COMB function in Equation 4, we use the most recent mail
in all methods, as we do not see noticeable difference if switched to
themean of mails.We set the dimension of the output dynamic node
embeddings to be 100. We apply the attention aggregator with 2
attention heads for the message passing step in all baseline methods.
For DySAT, we use 3 snapshots with the duration of each snapshot
to be 10000 seconds on the four small-scale datasets, 6 hours on
GDELT, and 5 years on MAG. As mentioned in Section 3, TGL uses
dynamic snapshot windows to ensure that the time resolution of
the generated dynamic node embeddings is the same as the other
TGNNs. For fairness, we add layer normalization to JOIDE and
TGAT, which allows all methods to have layer normalization and
in-between each layer. For all methods, we sweep the learning rate
from {0.01,0.001,0.0001} and dropout from {0.1,0.2,0.3,0.4,0.5}. The
TGNN models are trained with the link prediction task and directly
used in the dynamic node classification task without fine-tuning [1,
15]. On all datasets, we follow the extrapolation setting that predict
the links or node properties in the future given the dynamic graphs
in the past. We provide comprehensive and nondiscriminatory
benchmark results for various TGNNs by evaluating them in the
TGL framework.

4.1 Datasets
Table 3 shows the statistic of the six datasets we use to evaluate the
performance of TGL. As the Wikipedia [15], Reddit [15], MOOC
[10], and LastFM [10] datasets are small-scale and bipartite dynamic
graphs, in order to evaluate the performance on general and large-
scale graphs, we introduce two large-scale datasets – GDELT and
MAG. These two datasets contains 0.2 and 1.3 billion edges in
multiple years and focus on testing the capability of TGNNs in two
different dimensions.

4.1.1 GDELT. The GDELT dataset is a Temporal Knowledge Graph
(TKG) originated from the Event Database in GDELT 2.0 [11] which
records events happening in the world from news and articles in
over 100 languages every 15 minutes. Compared with the previous
small-scale featureless dataset extracted from the same source [8],
we propose a larger and featured version using the events happened
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Table 3: Dataset Statistic. Themax(𝑡) column shows themax-
imum edge timestamp (minimum edge timestamp is 0 in all
datasets). |𝑑𝑣 | and |𝑑𝑒 | show the dimensions of node features
and edge features, respectively. The * denotes randomized
features.

|𝑉 | |𝐸 | max(𝑡) Labels Classes |𝑑𝑣 | |𝑑𝑒 |
Wikipedia 9K 157K 2.7e6 217 2 - 172

Reddit 11K 672K 2.7e6 366 2 - 172
MOOC 7K 412K 2.6e6 - - - 128*
LastFM 2K 1.3M 1.3e8 - - - 128*

GDELT 17K 191M 1.8e5 42M 81 413 186
MAG 122M 1.3B 120 1.4M 152 768 -

from the beginning of 2016 to the end of 2020. Our GDELT dataset
is a homogeneous dynamic graph where the nodes represent ac-
tors and temporal edges represent point-time events. Each node
has a 413-dimensional multi-hot vector representing the CAMEO
codes attached to the corresponding actor to server as node fea-
tures. Each temporal edge has a timestamp and a 186-dimensional
multi-hot vector representing the CAMEO codes attached to the
corresponding event to server as temporal edge features. The link
prediction task on the GDELT dataset predicts whether there will
be an event happening between two actors at a given timestamp.
For the node classification task, we use the countries where the
actors were located when the events happened as the dynamic node
labels. We remove the dynamic node labels for the nodes that have
the same labels at their most recent timestamps to make this task
more challenging. We use the events before 2019, in 2019, and in
2020 as training, validation, and test set, respectively. The GDELT
datasets has dense temporal interactions between the nodes and
requires TGNNs to be able to capture mutable node information
for a long time duration.

4.1.2 MAG. The MAG dataset is a homogeneous sub-graph of the
heterogeneous MAG240M graph in OGB-LSC [5]. We extract the
paper-paper citation network where each node in MAG represents
one academic paper. A directional temporal edge from node 𝑢 to
node 𝑣 represents a citation of the paper 𝑣 in the paper 𝑢 and has a
timestamp representing the year when the paper𝑢 is published. The
node features are 768-dimensional vectors generated by embedding
the abstract of the paper using RoBERTa [12]. The link prediction
task on the MAG dataset predicts what papers will a new paper
cite. For the node classification dataset, we use the arXiv subject
areas as node labels. We use the papers published before 2018, in
2018, and in 2019 as training, validation, and test set. The MAG
dataset test the capability of TGNN models to learn dynamic node
embeddings on large graph with stable nodes and edges.

4.2 Parallel Temporal Sampler
The performance of our parallel temporal sampler is evaluated on
the g4dn.8xlarge instance on AWS EC2 with 32 virtual CPUs and
64GB of main memory. We select three representative sampling
algorithms
• DySAT 2-layer sampling represents the temporal graph sam-
pling for snapshot-based methods. The supporting nodes

Table 4: Execution time and improvement with respect to
baseline samplers on the Wikipedia dataset for one epoch.

DySAT TGAT TGN
#Threads 1 8 32 1 8 32 1 8 32
Time (s) 1.161 0.446 0.371 1.557 0.569 0.370 0.094 0.46 0.039
Improv. - - - 23× 48× 57× 69× 188× 289×

are chosen uniformly from the temporal neighbors in each
dynamic snapshots.
• TGAT 2-layer sampling represents the uniformly temporal
graph sampling which selects supporting nodes uniformly
from all past temporal neighbors.
• TGN 1-layer sampling represents the most recent temporal
graph sampling which selects most recent temporal neigh-
bors as supporting nodes. Most recent sampling algorithms
are usually used in memory-based methods and hence re-
quires one less supporting layers.

Table 4 shows the improvement (speedup) of the temporal paral-
lel sampler in TGL compared with the samplers in the open-sourced
baselines using different number of threads. The baseline samplers
sample the neighbors by performing single-thread vectorized bi-
nary search on sorted neighbors lists. We show the sampling time
for one epoch with batch size of 600 positive and 600 negative edges.
With our efficient T-CSR data structure, TGL spends less than 0.5
seconds in sampling on one epoch of the Wikipedia dataset for all
three sampling algorithms. Using 32 threads, TGL achieves 57×
and 289× speedup compared with the sampler in TGAT and TGN.
The speedup is a result by combined factors of 1) the T-CSR data
structure, 2) data parallelism, and 3) efficiency of C++ over Python.

Figure 4 shows the runtime and the runtime breakdown of our
temporal parallel sampler using a different number of threads. TGL
achieves 3.13×, 4.20×, and 2.42× speedup using 32 threads for the
DySAT, TGAT, and TGN sampling algorithms. The reasons for the
sub-linear speedup are 1) node-wise locks in updating the pointers
2) memory performance bottleneck when fetching the selected
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Figure 4: (a) Scalability of the temporal sampler on the
Wikipedia dataset. (b) Runtime breakdown (normalized by
single thread runtime) of the temporal sampler on the
Wikipedia dataset with 1 (top), 8 (mid), and 32 (bottom)
threads. Ptr., BS, Spl., and Oth. denote the time to update
pointers (line 4 and 11), to performbinary search (line 13), to
sample neighbors (line 16), and to generate DGL MFGs (line
18) in Algorithm 1, respectively.



Table 5: Link Prediction results on theWikipedia, Reddit, MOOC, and LastFM datasets. The Time columns refer to the training
time per epoch. (First second)

Wikipedia Reddit MOOC LastFM
Baseline TGL Baseline TGL TGL TGL

AP Time (s) AP Time (s) Speedup AP Time (s) AP Time (s) Speedup AP Time (s) AP Time (s)
JODIE 94.35 16.6 98.90 1.0 16.94× 96.56 89.0 99.45 4.2 21.24× 98.95 2.8 78.78 8.7
DySAT - - 96.37 6.4 - - - 98.57 21.5 - 98.76 19.5 76.39 48.4
TGAT 95.09 110.1 97.26 6.6 16.73× 97.82 576.2 99.48 39.9 14.45× 98.50 24.5 54.82 91.4
TGN 98.34 17.7 99.62 2.1 8.51× 98.47 91.9 99.78 10.5 8.33× 99.59 5.7 73.76 18.7

APAN 98.12 8.8 98.14 2.0 4.38× 99.22 121.7 99.24 8.8 13.85× 98.58 5.6 62.73 18.2

edge information 3) linear workload with respect to the number of
threads when generating DGL MFGs.

4.3 Single-GPU Training
We evaluate the performance of TGL using the same g4dn.8xlarge
AWSEC2 instancewith oneNvidia T4 GPU.We find that on all small
datasets, the batch size of 600 positive edges with 600 negative edges
are a good balance point between the convergence rate and training
speed for memory-based TGNNs. Hence, for a fair comparison, we
use batch size of 600 for all five selected TGNN variants in TGL and
their open-sourced baselines. For the MOOC and LastFM datasets,
we randomly generate 128-dimensional edge features since the
original datasets do not contain node or edge features. We use 32
threads in the temporal parallel sampler. All data are stored on GPU
to avoid the data transfer overhead.

Table 5 shows the accuracy and per epoch training time of the
five baselines and TGL in the link prediction task. We report the
accuracy in Average Precision (AP) on both the positive and nega-
tive test edges. For all methods, TGL achieves similar or higher AP
than the baselines with significantly faster runtime (see Figure 1).
The accuracy improvement on TGAT and JODIE is because we use
layer normalization in-between each layer. The accuracy of TGAT
and TGN also benefits from better hyper-parameters and conver-
gence. TGN achieves the highest AP in the link prediction task on
all datasets except the LastFM dataset, followed by JODIE, DySAT
and TGAT. The pure memory-based TGNN and JODIE achieves
top-tier accuracy with the fastest training time. With efficiently
implemented components and optimized data path, TGL achieves
an average of 13× speedup in the per-epoch training time.
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Figure 5: Validation APwith training time (left) and normal-
ized runtime breakdown (right) on the Wikipedia dataset.
The circled numbers refer to the six steps in Figure 2.

Figure 5 shows the convergence curve and runtime breakdown
on the Wikipedia dataset. With our temporal parallel sampler, the
sampling overhead in TGL is negligible. For computation intensive
two-layer TGNNs like DySAT and TGAT, the runtime is dominated
by the computation on GPU. For memory-based models, the time
spent in updating the node memory and the mailbox takes up to
30% of the total training time.

Table 6 shows the results of directly using the learned TGNN
models on the dynamic node classification task. On the Wikipedia
and the Reddit datasets, the node classification tasks are to iden-
tify banned users. Since the number of positive labels are small
compared with the number of negative labels, we train the MLP
classifiers with an equal number of randomly sampled negative
labels, similar to training link prediction models. We also show
the accuracy as AP on both the positive nodes and sampled the
negative nodes. TGN and JODIE achieve the highest AP on the
Wikipedia and the Reddit datasets, where JODIE achieves more
than 7% AP than other methods on the Reddit dataset. We assume
this is due to the noisy neighbors in the Reddit dataset, which pre-
vent high-expressive model from learning general patterns on the
graph structure.

4.4 Random Chunk Scheduling
To evaluate the effectiveness of the random chunk scheduling tech-
nique, we train the TGN model which has the best overall perfor-
mance on the two small-scale datasets, as training with a small
batch size and plot various convergence curves on the large-scale
datasets is too slow. To make a fair comparison, we train the base-
line models with the best group of hyperparameters (0.001 learning
rate, 600 batch size). We then increase the batch size and also lin-
early increase the learning rate, as a larger batch size leads to a
better approximation of the total loss [3]. Specifically, we train the
same model with 8× the batch size and learning rate (0.008 learning

Table 6: Dynamic node classification result (First second)).

Wikipedia Reddit GDLET MAG
AP F1-Micro

JODIE 81.73 70.91 11.25 43.94
DySAT 86.30 61.70 10.05 50.42
TGAT 85.18 60.61 10.04 51.72
TGN 88.33 63.78 11.89 49.20

APAN 82.54 62.00 10.03 -
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Figure 6: Validation loss (moving average of 5 epochs) with
different chunk size when using random chunk scheduling
algorithmwith large batch size onWikipedia (left) and Red-
dit (right) dataset. We denote batch size 𝑥 and number of
chunks per batch 𝑦 as 𝑥 − 𝑦 in the legends.

rate, 4800 batch size) with the chunk sizes of 4800, 300, and 150
(number of chunks per batch size 1, 16, and 32). Since the node
memory used in the validation process is inherited from the train-
ing process, when we compute the validation loss, we first reset
the node memory and use a constant batch size of 600 to run one
whole epoch on the training and validation set. Figure 6 shows the
validation loss under different batch sizes and chunk sizes on the
Reddit and Wikipedia datasets. The models trained with the batch
size of 4800 and no random chunk scheduling cannot learn on both
datasets after 5 to 10 epochs, due to the lost dependencies in the
training mini-batches. On the Wikipedia dataset, the batch size of
4800 with 16 chunks per batch performs better than no chunks
while the same batch size with 32 chunks per batch achieves similar
convergence after 30 epochs. On the Reddit dataset, our random
chunk scheduling technique also mitigates the overfitting issue and
achieves close to baseline convergences within 30 epochs.

4.5 Multi-GPU Training
We evaluate the performance of TGL on the two large-scale datasets
with multiple GPUs. We use the p3dn.24xlarge instance on EC2
with 96 virtual CPUs, 768GB of main memory, and 8 Nvidia V100
GPUs. We use 64 threads in the temporal parallel sampler and
assign 8 threads for each trainer process. We use a local batch
size of 4000 positive and 4000 negative edges on each GPU. The

Table 7: Link Prediction results of TGL on GDELT and MAG.
The Time columns refer to the training time per epoch (First
second)).

GDELT MAG
AP Time (s) AP Time (s)

JODIE 97.98 599.2 99.41 4128.3
DySAT 98.72 10651.4 98.27 19748.6
TGAT 96.49 8499.2 99.02 32104.5
TGN 99.39 915.9 99.49 8912.5

APAN 95.28 1358.5 - -

1 GPU 2 GPUs 4 GPUs 8 GPUs
0

0.2
0.4
0.6
0.8
1

JODIE
DySAT
TGAT
TGN
APAN

Figure 7: Normalized Training time per epochwith different
number of GPUs on the GDELT dataset.

global copy of the node memory and the mailbox are stored in the
shared memory. The trainer process then overlaps the MFG copy to
GPU with the computation on GPU by creating additional copying
threads on different CUDA streams. The gradients in each iteration
are synchronized among the trainer processes through the NCCL
backend.

Table 7 shows the AP and running time in the link prediction
task. Similar to the single GPU results, TGN achieves the highest
AP and JODIE has the fastest training time. On the GDELT datasets,
the memory-based models can train one epoch within 30 minutes,
while the non-memory based models need more than 3 hours. On
the MAG dataset, APAN throws out of memory error as it requires
the mailbox to store 10 most recent mails for each node in the
graph. Figure 7 shows the scalability of TGL on multiple GPUs. TGL
achieves 2.74×, 2.28×, 2.25×, 2.30× and 1.80× speedup by using 4
GPUs for JODIE, DySAT, TGAT, TGN, and APAN, respectively. For
8 GPUs, the bandwidth between CPU and main memory to slice
the node and edge features and update the node memory and the
mailbox and the number of PCI-E channels to copy the MFGs to
the GPUs are saturated.

Table 6 shows the F1-Micro of the trained models in the multiple-
class single-label dynamic node classification task. On the GDELT
dataset, all models perform bad where JODIE and TGN has slightly
better performance than others. On the MAG dataset, TGAT and
DySAT with two complete graph attention layers achieves the
highest and second highest accuracy while JODIE with no graph
attention layer achieves the lowest accuracy.

5 CONCLUSION
In this work, we proposed TGL – the first unified framework for
large-scale TGNN training. TGL allows users to efficiently train
different TGNN variants on a single GPU and multiple GPUs by
writing simple configuration files. We designed the T-CSR data
structure to store the dynamic graphs and developed a temporal
parallel sampler which greatly reduces the sampling overhead. We
proposed the random chunk scheduling technique to mitigate the
loss of dependencies when training with a large batch size. We
processed two large-scale datasets to test the capability of TGNNs
in two different dimensions. We evaluated the performance of five
different TGNN variants on four small-scale datasets and two large-
scale datasets with billions of edges. TGL achieves similar or better
accuracy on all datasets with significantly faster training time com-
pared with the open-sourced baselines.
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