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ABSTRACT
Memory-based Temporal Graph Neural Networks are powerful
tools in dynamic graph representation learning and have demon-
strated superior performance inmany real-world applications. How-
ever, their node memory favors smaller batch sizes to capture more
dependencies in graph events and needs to be maintained syn-
chronously across all trainers. As a result, existing frameworks
suffer from accuracy loss when scaling to multiple GPUs. Even
worse, the tremendous overhead of synchronizing the node mem-
ory makes it impractical to deploy the solution in GPU clusters. In
this work, we propose DistTGL — an efficient and scalable solu-
tion to train memory-based TGNNs on distributed GPU clusters.
DistTGL has three improvements over existing solutions: an en-
hanced TGNN model, a novel training algorithm, and an optimized
system. In experiments, DistTGL achieves near-linear convergence
speedup, outperforming the state-of-the-art single-machinemethod
by 14.5% in accuracy and 10.17× in training throughput.
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1 INTRODUCTION
Many real world graphs contain important time domain informa-
tion. For example, in recommender systems, user interests and
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global trends both change over time; in fraud detection, the time be-
tween two consecutive transactions often marks out suspicious ac-
tivities. In spatial-temporal applications such as traffic and weather
prediction, temporal and spatial information are equally important.
Recently, along with the success of Graph Neural Networks (GNNs)
in static graph representation learning, researchers have designed
Temporal Graph Neural Networks (TGNNs) [9, 11, 14, 15, 18, 23]
to exploit temporal information in dynamic graphs. On various
dynamic graphs including social network graphs, traffic graphs,
and knowledge graphs, TGNNs have demonstrated superior accu-
racy on various downstream tasks such as temporal link predic-
tion and dynamic node classification, substantially outperforming
static GNNs and other traditional methods [14, 23]. Depending on
whether the timestamps of graph events are discrete or continu-
ous, dynamic graphs can be classified into Discrete Time Dynamic
Graphs (DTDGs) and Continuous Time Dynamic Graphs (CTDGs).
In this work, we focus on the more general and challenging TGNNs
on CTDGs.

On dynamic graphs, the number of related events on each node
increases as time evolves. When this number is large, neither tem-
poral attention-based aggregation nor historical neighbor sampling
methods allow TGNNs to capture the entire history. To compen-
sate for the lost history, researchers have designed Memory-based
Temporal Graph Neural Networks (M-TGNNs) [9, 14, 18, 20] that
maintain node-level memory vectors to summarize independent
node history. The nodememory inM-TGNNs not only allows the ag-
gregator to gather information from fewer historical neighbors but
also enlarges the receptive field because the node memory vectors
already contain information multiple hops away. As a result, state-
of-the-art M-TGNN TGN [14] only requires a single GNN layer
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Figure 2: (a) Test accuracy of the GDELT dataset under dif-
ferent batch sizes. (b) Time per epoch spend in reading and
writing of the node memory on different numbers of ma-
chines.

with some recent neighbors as supporting nodes. In the benchmark
in TGL [30], M-TGNNs fill out the top ranks both in accuracy and
training time.

Despite the success of M-TGNNs, it is difficult to deploy them to
large-scale production applications due to their poor scalability. The
auxiliary node memory creates temporal dependencies and requires
training mini-batches to be small and scheduled in chronological
order. Specifically, there are two major challenges in exploiting
data parallelism in M-TGNN training. First, simply increasing the
batch size loses the temporal dependency information between
events and leads to information loss (please refer to Section 2.1.1
for more details). Figure 2(a) shows that the accuracy decreases as
the batch size increases on the GDELT dataset. On smaller datasets,
this decrease in accuracy is usually observed for relatively small
batch sizes around 102-103 edges [14], which are not big enough
to appreciate the speedup provided by multi-GPU data parallelism.
Second, all the trainers need to access andmaintain a unified version
of node memory, leading to enormous amount of remote traffic in
distributed systems. Unlike static GNN training, the remote accesses
to the node memory (typically hundreds of megabytes per mini-
batch) have strict temporal dependencies. Due to these excess and
interdependent remote accesses, distributed training is often slower
than single-machine training. Figure 2(b) shows the case when the
node memory is distributed to all machines where each machine
owns a unique equally-sized portion. Furthermore, the remedy to
cross-machine traffic in static GNN training [2, 26, 27] — graph
partitioning technique METIS [8], is not applicable to dynamic
graphs. As a result, on both small- and large-scale datasets, the
training time of the state-of-the-art M-TGNN framework [30] using
8 GPUs on a single node is 10 − 100× slower than state-of-the-
art distributed static GNNs [25, 27], with an unsatisfactory 2-3×
speedup over a single GPU.

In this work, we propose DistTGL — an efficient and scalable
solution to train M-TGNNs on distributed GPU clusters. DistTGL
improves the existing M-TGNN training solutions from three per-
spectives:

• Model: We enhance the node memory in M-TGNNs by
adding additional static node memory, which improves both
the accuracy and convergence rate.

• Algorithm: We design a novel training algorithm to over-
come the challenges of accuracy loss and communication
overhead in distributed scenarios.

• System: We build an optimized system adopting prefetch-
ing and pipelining techniques to minimize the mini-batch
generation overhead.

Compared with existing methods, DistTGL has significant improve-
ment in convergence and training throughput. To the best of our
knowledge, DistTGL is the first work that scales M-TGNN train-
ing to distributed GPU clusters. DistTGL is publicaly available at
Github1. Our main contributions are

• Based on the unique characteristics of M-TGNN training,
we propose two novel parallel training strategies — epoch
parallelism and memory parallelism, which allow M-TGNNs
to capture the same number of dependent graph events on
multiple GPUs as on a single GPU.

• We provide heuristic guidelines to determine the optimal
training configurations based on the dataset and hardware
characteristics.

• To overlap mini-batch generation and GPU training, we
serialize the memory operations on the node memory and
efficiently execute them by an independent daemon process,
avoiding complex and expensive synchronizations.

• In experiments, DistTGL achieves near-linear speedup when
scaling to multiple GPUs in convergence rate, outperforming
state-of-the-art single machine method [30] by more than
10× (see Figure 1).

2 BACKGROUND
Given a dynamic graph, TGNNs aim at embedding the contextual,
structural, and temporal information of a given node at a given
timestamp into a low-dimensional vector. M-TGNNs rely on the
node memory and temporal graph attention to generate these vec-
tors. We first explain the basic propagation rules in M-TGNNs. For
the rest of this paper, unless stated otherwise, we denote scalar as
lower case letter 𝑥 , vector as bold lower case letter 𝒙 , and matrix
as bold upper case letter 𝑿 . We denote row-wise concatenation of
vectors (or matrices) using double vertical bar within curly brackets
{𝒙 | |𝒚}.

2.1 Memory-Based Temporal Graph Neural
Networks

M-TGNNs [9, 14, 18, 20] maintain dynamic node-level vectors to
track the node history. TGN [14] proposes a general framework for
different M-TGNN variants and supports different types of graph
events. Here, we introduce TGN on the most common dynamic
graphs with graph events of edges appearing. For a dynamic graph
G(V, E), its graph events could be represented by a time-ordered
series {(𝑢, 𝑣, 𝒆𝑢𝑣, 𝑡)} where each quadruple represents an edge with
edge feature 𝒆𝑢𝑣 occurring between node 𝑢 and node 𝑣 at time 𝑡 .
For each node 𝑣 ∈ V , we maintain a node memory vector 𝒔𝑣 , which
is initialized to be a zero vector. When an edge 𝑒𝑢𝑣 connecting node
𝑢 and node 𝑣 appears at timestamp 𝑡 , two mails are generated at
node 𝑢 and node 𝑣

𝒎𝑢 =
{
𝒔𝑢 | |𝒔𝑣 | |Φ(𝑡 − 𝑡−𝑢 ) | |𝒆𝑢𝑣

}
(1)

𝒎𝑣 =
{
𝒔𝑣 | |𝒔𝑢 | |Φ(𝑡 − 𝑡−𝑣 ) | |𝒆𝑢𝑣

}
, (2)

1https://github.com/amazon-science/disttgl

https://github.com/amazon-science/disttgl
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where Φ(·) is the time encoding [23], 𝑡−𝑢 is the timestamp when 𝒔𝑢
is last updated, and 𝒆𝑢𝑣 is the edge feature. Then, we use an update
function UPDT to update the node memory of node 𝑢 and node 𝑣 ,

𝒔𝑢 = UPDT (𝒔𝑢 ,𝒎𝑢 ) 𝒔𝑣 = UPDT (𝒔𝑣,𝒎𝑣) (3)

The update function can be implemented using any sequence model.
In TGN-attn [14], UPDT(·) is implemented as GRU cells. Since the
UPDT function is only called when a related graph event occurs,
the lengths of the hidden status of different nodes in the graph are
different. In backward propagation, the learnable parameters𝑾 and
𝒃 are trained within each GRU cell (the gradients do not flow back
to previous GRU cells, like in the Back-Propagation-Through-Time
algorithm).

After updating the node memory, a one-layer temporal atten-
tion layer [23] gathers and aggregates information from the node
memory of the most recent neighbors 𝑺𝑤 ,𝑤 ∈ N𝑣 to compute the
dynamic node embedding 𝒉𝑣 for node 𝑣 . If dynamic or static node
features are available, they can be combined with the node memory.

𝒒 =𝑾𝑞{𝒔𝑣 | |𝚽(0)} + 𝒃𝑠 (4)
𝑲 =𝑾𝑘 {𝑺𝑤 | |𝑬𝑣𝑤 | |𝚽(Δ𝒕)} + 𝒃𝑘 (5)
𝑽 =𝑾𝑣{𝑺𝑤 | |𝑬𝑣𝑤 | |𝚽(Δ𝒕)} + 𝒃𝑣 (6)

𝒉𝑣 = Softmax
(
𝒒𝑲T√︁
|N𝑣 |

)
𝑽 , (7)

where Δ𝒕 is the time differences of the current timestamp with the
last updated time of the node memory of𝑤 ∈ N𝑣 , and 𝑬𝑣𝑤 is the
matrix of edge features connecting nodes 𝑣 and𝑤 ∈ N𝑣 .

Most TGNNs are self-supervised using the temporal edges as
ground truth information, where the updates to node memory are
delayed by one iteration due to the information leak problem [14].
Specifically, the mails are cached for the supporting nodes, and
the output embeddings are computed using Equation 4-7 before
their node memory is updated using Equation 3. This reversed
computation order needs to be implemented both in training and
at inference to avoid the information leak problem.

2.1.1 Batched M-TGNN Training. Since the training of M-TGNNs
needs to be synchronized with the node memory, the training sam-
ples need to be scheduled chronologically. Theoretically, the node
memory of a node needs to be immediately updated after a relevant
graph event occurs on that node so that later dependent nodes can
use this up-to-date node memory in the message passing process.
Without changing the algorithm, we can process consecutive graph
events that do not have overlapping nodes in batches by updating
their node memory in parallel. However, this limits the batch size
to no more than a few graph events on most dynamic graphs. In
practice, the tiny batch size is computationally infeasible on modern
hardware, such as GPU, intended for highly paralleled programs. To
solve this problem, M-TGNNs process the incoming graph events in
larger fixed-size batches and update the node memory for the nodes
that have new mails once per batch to reduce the computation time.
Let {𝒎𝑢 } be the set of mails generated at node𝑢 in a batch of graph
events, 𝒔𝑢 is then updated using a COMB(·) function

𝒔𝑢 = UPDT(𝒔𝑢 ,COMB({𝒎𝑢 })). (8)

information loss staleness

input node memory
input mails

updated node memory

time
mini-batch mini-batch mini-batch

previous previous previous pcurrentp

Figure 3: Overview of the inaccuracy in node memory
caused by batched training.

Note that the mails {𝒎𝑢 } is not using the up-to-date node memory
(since it is not computed yet) but using the outdated node mem-
ory at the last batch of graph events. In TGN-attn, the COMB(·)
function simply outputs the most recent mail. This batching ap-
proach both updates the node memory in batch and computes the
attention-based message passing in batch. The batched update to
node memory causes two types of inaccuracy in the node memory
— staleness and information loss (Figure 3). The staleness in the
node memory refers to the problem where the node memory is not
up-to-date due to the reversed computation order to avoid the in-
formation leak problem. The information loss in the node memory
refers to the node memory not being updated by the mails that are
filtered out by the COMB(·) function as well as the inaccuracy of
the mails due to using outdated node memory. When the batch size
is increased, both the staleness and information loss in the node
memory increase, resulting in lower accuracy [14]. Besides these
two types of inaccuracy, another common inaccuracy in sequence
models is the inaccuracy due to not re-computing the hidden em-
beddings when the weights are updated, which generally does not
affect the performance.

2.2 Related Works
Dynamic graph representation learning plays an important role in
many real-world problems. Many discrete TGNNs [6, 7, 11, 15], con-
tinuous TGNNs [14, 18, 20, 23], and non-GNN methods [17, 21] are
proposed to learn node embeddings on dynamic graphs. There are
many existing works that accelerate the message passing scheme
in GNNs on a single node [5, 19] and on distributed GPU clus-
ters [1, 2, 25–27]. In discrete TGNNs, the propagation within a
graph snapshot is the same as static GNNs where these existing
methods can be directly applied to. There are also some existing
works that specialize in discrete TGNNs on a single GPU [24, 28]
and distributed systems [3]. However, these methods do not ap-
ply to continuous M-TGNNs due to the unique propagation rule
of M-TGNNs. Accelerating continuous M-TGNNs is challenging
due to the aforementioned antithesis between training speed and
accuracy. Distributed M-TGNN training is even more challeng-
ing due to the high volume of data synchronization. There are a
few works that accelerate M-TGNNs training. TGL [30] proposes
a general framework for single-node multiple-GPU continuous
TGNNs. However, TGL does not support distributed GPU clus-
ters. The speedup of TGL on multiple GPUs in a single machine
is also unsatisfactory, only achieving 2 − 3× speedup on 8 GPUs.
EDGE [4] proposes to speedup the training by replacing the dy-
namic node memory of active nodes with static learnable node
memory, gambling on the chance that active nodes have stable
embeddings. To the best of our knowledge, there is no existing
work for M-TGNN training that achieves near-linear scalability on
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Figure 4: Overview of DistTGL training with 2 × 2 × 2 (mini-batch×epoch×memory) parallelism on two four-GPU machines.
For simplicity and easier understanding, we draw the reads and writes to the node memory at the beginning and end of each
training iteration. In our optimized system, they have performed asynchronously with the training iterations and are fully
overlapped with the GPU computation. Please refer to Figure 7 for more details on the three parallel training strategies.

single-node multiple-GPU, or operates on distributed GPU clusters.
For the inference task, TGOpt [22] proposes to accelerate TGNN
inference by de-duplication, memorization, and pre-computation.
Another work [29] proposes a system-architecture co-design that
accelerates M-TGNN inference on FPGAs. Unfortunately, these
techniques do not apply to M-TGNN training.

3 DISTTGL
We propose DistTGL — an efficient and scalable solution to train M-
TGNNs on distributed GPU clusters. DistTGL achieves scalability
through improvements from three perspectives: model, algorithm,
and system. From the model perspective, we introduce the static
node memory that explicitly separates the time irrelevant node in-
formation. From the algorithm perspective, we propose two novel
parallel training strategies and a method to determine the best
combination of these strategies on any given dataset and hardware
configuration. From the system perspective, we design an efficient
system to reduce and overlap mini-batch generation overhead with
GPU training. We introduce these improvements in the three fol-
lowing subsections.

3.1 M-TGNN Model with Static Node Memory
M-TGNNs rely on node memory to summarize the node history.
Previous work [4] argues that the node memory of nodes with ac-
tive interactions is static. While this may be true on some evolving
graphs like citation graphs, it fails on the dynamic graphs where

low degree node high degree node

static>dynamic

static=dynamic

dynamic>static

Figure 5: Accuracy differences of each node with static and
dynamic node memory on the Wikipedia dataset, sorted by
node degrees. Positive bars (in dynamic>static region) indi-
cate that dynamic node memory has better accuracy than
static node memory for those nodes, and vice versa.

high-frequency information is important, such as in fraud detec-
tion [16]. Figure 5 shows the comparison of the accuracy in the
temporal link prediction task that predicts destination nodes from
source nodes using static and dynamic node memory. We do not
observe any noticeable inclination on higher degree nodes favors
static node memory or vice versa. We also observe similar results
on the other datasets used in this work.

We believe that a general TGNN model should be able to cap-
ture both the dynamic and static node information of all nodes.
In DistTGL, we separate the static and dynamic node memory
and capture them explicitly. DistTGL keeps the original GRU node
memory on all nodes to capture the dynamic node information and
implements an additional mechanism to capture the static node in-
formation. There are two major benefits brought by this additional
static node history. First, it enhances the capability of M-TGNNs to
capture node history with burst interactions. Due to the batching
of updating the node memory, if a node interacts with others many
times in a short time period, it is inevitable that the COMB(·) func-
tion used in the dynamic node memory would filter out most of
these interactions, resulting in a loss of high-frequency information.
The static node memory, combined with the time encoding [23] in
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Figure 7: Overview of mini-batch parallelism, epoch parallelism, and memory parallelism on three trainer processes. The “R”
and “W” denote read and write operations to the shared node memory. In epoch parallelism, the arrows denote cross-process
communication to send mini-batch data. In memory parallelism, the arrows denote cross-process communication to send the
updated node memory.

the temporal attention aggregator, could boost the performance in
such cases. Second, the static node memory explicitly separates the
information irrelevant to batch sizes, which improves the perfor-
mance of data parallelized training. Since the static node memory is
irrelevant with time, all graph events can be used to supervise the
training process, allowing it to capture all static information regard-
less of batching. In this work, since most dynamic graphs do not
have node features, we use learnable node embeddings pre-trained
with the same task as the static node memory due to its simplicity.
The pre-training of these embeddings can be easily done in any
well-optimized distributed static GNN frameworks [1, 2, 25–27].
Note that the static node memory is similar to learnable weights in
the M-TGNN models and does not include any information in the
test set. On the other hand, the dynamic node memory contains
information in the test set and would cause information leaks if not
handled properly. DistTGL also supports other kinds of learnable or
non-learnable static node memory, such as co-trained embedding
tables or even node embeddings generated by static GNNs.

Figure 6 shows the two datasets which have the most significant
improvement with pre-trained static node memory. On a single
GPU, our improved model achieves remarkably better accuracy on
both datasets and a smoother convergence curve on the Flights
dataset (we do not show the curves for multi-GPU for a clearer
visualization). On the MOOC dataset, our model with static node
memory also improves the scalability in convergence on multiple-
GPU using epoch parallelism (which will be introduced later in
Section 3.2).

3.2 Parallel Training Algorithm
A straightforward approach to train M-TGNNs in parallel is to pro-
cess the graph events in large global batches and distribute them
to multiple trainers, which is used by TGL [30] in the setting of
multiple GPUs on a single node. We refer to this approach as the
mini-batch parallelism, which relaxes the inter-batch dependencies
in node memory. However, the key to achieving good accuracy in
multi-GPU M-TGNN training is to maintain the temporal depen-
dency when the graph events are processed in large batches. To
solve this problem, we propose two novel parallel training strategies
— epoch parallelism and memory parallelism. Epoch parallelism re-
laxes the dependencies in the node memory due to weight updates
and trains different epochs simultaneously on different trainers.
Memory parallelism trades space for accuracy by maintaining mul-
tiple copies of the node memory at different timestamps. In the
rest of this section, we first introduce the three types of parallelism

and their advantages and disadvantages. Then, we discuss how to
design an optimal training algorithm given any task specifications
and hardware configurations.

3.2.1 Mini-Batch Parallelism. Mini-batch parallelism simply trains
a large global batch on multiple trainers in parallel. On 𝑛 GPUs, a
global batch of graph events is evenly divided into 𝑛 local batches
where each GPU is responsible for computing the output embed-
dings of one local batch. Figure 7(a) shows the case when a global
batch is divided into three local batches on three trainers. Since
the global mini-batches are generated in chronological order, we
also split them into local mini-batches chronologically and ignore
the intra-dependency within each global mini-batch. Specifically,
these 𝑛 trainers first fetch the node memory and cached mails of
the assigned root nodes and their supporting nodes. Then, they
compute the forward and backward propagation and update the
model weights. Before they use the computed node memory to
update the node memory and cached mails, they need to make
sure all trainers have finished the fetch operations to avoid Write-
After-Read (WAR) hazard. Note that ideally, the node memory and
cached mails should be updated for both the root and supporting
nodes so that we do not need to re-compute Equation 3 when these
supporting nodes are referenced again in later batches. However, to
ensure the model weights can receive enough feedback in the back-
ward propagation, we do not update the node memory and cached
mails of the supporting nodes and re-compute them when they are
referenced later. Because the fetch and update of the node memory
are done simultaneously in all trainers, the node embeddings gener-
ated for later graph events in the global batch cannot perceive the
earlier graph events, incurring both staleness and information loss
in the node memory. In addition, mini-batch parallelism requires all
trainers to maintain the same copy of node memory, which leads
to enormous communication overhead on distributed systems.

3.2.2 Epoch Parallelism. Epoch parallelism leverages data paral-
lelism by training different epochs simultaneously using only one
copy of the node memory. In the vanilla M-TGNN training, self-
supervised by temporal edges on a single GPU, we first sample
some negative destination nodes for the root nodes in mini-batch 𝑖 .
We then collect the supporting nodes for all positive and negative
root nodes and fetch their node memory and cached mails. In the
later epochs, for the same root nodes in mini-batch 𝑖 , we sample
different sets of negative destination nodes and follow the same
procedure to get their node memory and cached mails. To train on
the same mini-batches in different epochs in parallel on 𝑛 trainers,
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we ignore the difference in node memory due to weight updates
in the last 𝑛 − 1 epochs. Thus, we can prepare one set of inputs
of the positive nodes and 𝑛 sets of inputs of the negative nodes
and train them in parallel. Note that these mini-batches need to be
scheduled in different iterations so that the gradients of positive
nodes are not simply multiplied by 𝑛. This scheduling increases
the variance of the gradients of the sampled mini-batches, as the
same set of positive nodes is learned for 𝑛 consecutive iterations.
The left part of Figure 7(b) shows the case when applying epoch
parallelism to three trainers. In each iteration, trainer P0 fetches
the node memory and cached mails for one positive mini-batch
and three negative mini-batches. After P0 finishes one iteration, it
writes to the node memory and sends the prepared mini-batches
(one positive mini-batch and the two unused negative mini-batches)
to P1. P1 receives the mini-batches from P0 and sends them (one
positive mini-batch and the unused one negative mini-batch) to P2
after the computation. Note that only P0 needs to write back the
updated node memory to the global copy of node memory in the
main memory. Although the node memory of this mini-batch in
P1 and P2 is updated using a more recent version of the weights,
writing them to the global copy would lead to Read-After-Write
(RAW) hazards with later training iterations. We also tried a finer-
grained updating policy which updates nodes that do not have this
RAW hazard in P1 and P2. However, it does not outperform the
original policy. To reduce the cross-trainer communication, we fur-
ther optimize the algorithm by reordering the mini-bathes so that
each trainer works on the same positive samples (with different
negative samples) for 𝑛 consecutive iterations (see the right part in
Figure 7(b)). However, epoch parallelism still requires all trainers to
access the same node memory, which is impractical on distributed
systems.

3.2.3 Memory Parallelism. Memory parallelism trades space for
time by training different time segments of the dynamic graph
simultaneously using separate copies of node memory. The left part
in Figure 7(c) shows the case when applying memory parallelism
on a dynamic graph with 6 mini-batches with three trainers and
three copies of node memory. Each trainer is only responsible for
one-third of the whole dynamic graph, i.e., a time segment of two
consecutive mini-batches. In every iteration, each trainer needs
to fetch its own node memory and cached mails. The design on
the left requires the intermediate node memory to be transferred
across the processes after the trainers finish their time segments.
For example, P0 needs to send the node memory of all the nodes in
the graph to P1 after iteration 1, which is expensive in distributed
systems. To solve this problem, we reorder the mini-batches across
the trainer (see the right part in Figure 7(c)) so that each trainer
trains sequentially on all the segments using its own node memory.
Since each trainer owns its individual node memory, there is no
synchronization of the node memory across the trainers, making it
the only suitable strategy for distributed systems.

3.2.4 Optimal Training Algorithm. The aforementioned three par-
allelization strategies all have their own unique characteristics.
We summarize their advantages and disadvantages in Table 1. To
achieve optimal training performance, we provide heuristic guide-
lines for DistTGL users to combine these strategies to pick their
advantages and offset their disadvantages. Consider a distributed

Table 1: Summary of the three parallel training strategies
on 𝑛 trainers. The comparison with single-GPU training is
made based on the same local batch size. The “Training over-
head” row refers to the overheads in mini-batch generation
at the beginning of each training iteration. The advantages
are marked in bold.

Mini-batch
Parallelism

Epoch
Parallelism

Memory
Parallelism

Captured
dependency

less than
single-GPU

same as
single-GPU

same as
single-GPU

Training
overhead

same as
single-GPU

𝑛 times
single-GPU

same as
single-GPU

Main memory
requirement

same as
single-GPU

same as
single-GPU

𝑛 times
single-GPU

Synchronization
across trainers

weights and
node memory

weights and
node memory

weights
only

Gradient descent
variance

same as
single-GPU

more than
single-GPU

same as
single-GPU

systemwith 𝑝 machines and𝑞 GPUs per machine. Let 𝑖× 𝑗×𝑘 = 𝑝×𝑞
be a training configuration where 𝑖 represents how many GPUs to
compute each mini-batch, 𝑘 represents how many copies of node
memory to maintain, and 𝑗 represents how many epochs to train in
parallel for each copy of node memory. We determine the optimal
choice of (𝑖, 𝑗, 𝑘) from task requirements and hardware configura-
tions. There are two constraints from the hardware side. First, we
need to have 𝑘 ≥ 𝑝 as memory parallelism is the only strategy that
does not synchronize node memory across the trainers. Then, the
main memory of each machine should be able to hold 𝑘/𝑝 copies
of node memory and cached mails, or at least hold sufficient cache
if using the disk-based memory caching storage option.

Under these constraints, we first determine 𝑖 according to the
largest batch size. Figure 8 shows that when the batch size increases,
fewer graph events would be captured in the node memory, espe-
cially for high-degree nodes. DistTGL users can set a threshold
for the amount of missing information so that DistTGL would re-
versely find out the largest batch size. For applications where high-
frequency information is crucial, we can set a stricter threshold for
high-degree nodes. Based on this batch size, 𝑖 can be determined
according to the GPU specifications. For 𝑗 and 𝑘 , we always prefer
to apply memory parallelism since it leads to better convergence,
which we have also verified from experiments (see Figure 9.(b)). In
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Figure 8: Number of captured events in the node memory
with different batch sizes, sorted by node degree from high
to low on the Wikipedia dataset.
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summary, we first determine 𝑖 based on task requirements, then 𝑘

based on hardware specification, and lastly 𝑗 is fixed by 𝑝 ×𝑞/𝑖 × 𝑘 .
For example, on a distributed system with 4 machines and 8

GPUs each machine, we determine the largest batch size is 3200
edges. The GPU saturates when batch size is larger than 1600 edges.
So we first set local batch size to be 1600 edges and 𝑖 = 2. The main
memory of each machine can hold two copies of the node memory.
Then we set 𝑘 = 32/2/2 = 8. Finally, 𝑗 is fixed to be 32/2/8 = 2.

3.3 Distributed Training System
Designing a scalable distributed training system for M-TGNNs is
not trivial. Even for the most straightforward mini-batch paral-
lelism, previous work [30] only achieves 2-3× speedup using 8
GPUs on a single node due to excessive overheads in mini-batch
generation. We solve this issue by prefetching the mini-batches in
a separate process and pipelining the sub-tasks (loading from disk,
slicing features, slicing node memory, writing back to node mem-
ory) within one mini-batch generation. Figure 4 shows an overview
of DistTGL serializing the memory operations and executing them
asynchronously on separate processes. Here we focus on describing
the most important design that handles the reads and writes to the
node memory. As memory parallelism works on separate copies of
node memory which has no dependency and can be easily paral-
lelized, we consider the case for each 𝑖 × 𝑗 trainer group that shares
the same copy of the node memory. Since 𝑘 ≥ 𝑝 , each trainer group
must have all the processes on the same physical machine. Within
each 𝑖 × 𝑗 group, the memory operations can be serialized as a spin
lock acting on each 𝑖 sub-group. For example, for 𝑖 × 𝑗 = 2 × 2, we
have the memory access sequence

(R0R1) (W0W1) (R2R3) (W2W3) (R0R1) (W0W1) · · · ,

where R𝑖 and W𝑖 denote read and write requests from trainer 𝑖 , and
there is no ordering for the requests within each bracket.

In DistTGL, instead of implementing an expensive cross-process
lock mechanism, we launch an additional memory daemon process
for each group of 𝑖 × 𝑗 trainer processes to handle the read and
write requests for all the trainers in that group. Let 𝑏𝑠 be the local
batch size, 𝑑 be the number of sampled supporting nodes for each
root node, and 𝑑mem be the dimension of the node memory. The
memory process allocates the following buffers, which are shared
with the trainers:

• mem_read_buf of size [𝑖 × 𝑗, 𝑗, 𝑏𝑠 × 𝑑,𝑑mem] that holds the
results of the memory read requests.

• mail_read_buf of size [𝑖 × 𝑗, 𝑗, 𝑏𝑠 × 𝑑, 2𝑑mem] that holds
the results of the mail read requests.

• read_1idx_buf of size [𝑖 × 𝑗, 𝑗, 𝑏𝑠 × 𝑑 + 1] that holds the
indexes of the read requests and its length.

• mem_write_buf of size [𝑖 × 𝑗, 𝑏𝑠, 𝑑mem] that holds the input
of the memory write request.

• mail_write_buf of size [𝑖 × 𝑗, 𝑏𝑠, 2𝑑mem] that holds the in-
put of the mail write request.

• write_1idx_buf of size [𝑖 × 𝑗, 𝑏𝑠 + 1] that holds the indexes
of the read requests and its length.

• read_status of size [𝑖 × 𝑗] that indicates the status of the
read request.

Algorithm 1 Memory Daemon Process
Input: read1_idx_buf, mem_write_buf, mail_write_buf,
write_1idx_buf
Modify: read_status, write_stats
Output: mem_read_buf, mail_read_buf
repeat

reset memory and mail
rank = 0
repeat

for 𝑟 in [rank,rank + 𝑗 ) do in parallel
wait until write_status[𝑟 ] == 1
write to memory from mem_write_buf[𝑟 ]
write to mail from mail_write_buf[𝑟 ]
write_status[𝑟 ] = 0

end for
rank += 𝑖

rank = 0 if rank == 𝑖 × 𝑗

for 𝑟 in [rank,rank + 𝑗 ) do in parallel
wait until read_status[𝑟 ] == 1
for 𝑗 𝑗 in [0, 𝑗 ) do in parallel

slice memory to mem_read_buf[𝑟 ][ 𝑗 𝑗]
slice mail to mail_read_buf[𝑟 ][ 𝑗 𝑗]

end for
read_status[𝑟 ] = 0

end for
until epoch end

until training end

• write_status of size [𝑖 × 𝑗] that indicates the status of the
write request.

Algorithm 1 shows the pseudo-code of the memory daemon process.
Each trainer process issues the read and write requests by copying
the inputs to the shared buffers and setting the elements of its rank
in read_status and write_status to be 1. The memory daemon
process executes these requests in serialized order, puts the read
results to the buffers, and resets the status. Note that the first read
request of each epoch is not issued, as the results are always all
zero matrices right after the initialization.

4 EXPERIMENTS
We perform detailed experiments to evaluate the performance of
DistTGL. We implement DistTGL using PyTorch [12] 1.11.0 and
DGL [19] 0.8.2.

Table 2: Dataset Statistic. Themax(𝑡) column shows themax-
imum edge timestamp (minimum edge timestamp is 0 in
all datasets). |𝑑𝑣 | and |𝑑𝑒 | show the dimensions of node fea-
tures and edge features, respectively. The * mark denotes
pre-trained features.

|𝑉 | |𝐸 | max(𝑡) |𝑑𝑣 | |𝑑𝑒 |
Wikipedia 9,227 157,474 2.7e6 100* 172

Reddit 10,984 672,447 2.7e6 100* 172
MOOC 7,144 411,749 2.6e7 100* -
Flights 13,169 1,927,145 1.0e7 100* -
GDELT 16,682 191,290,882 1.6e8 413 130
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Figure 9: (a) Convergence curve of DistTGL with different epoch parallelism 𝑗 using 1-8 GPUs on one node. (b) Convergence
curve of DistTGLwith combination of different epoch andmemory parallelism 𝑗×𝑘 using 8GPUs on one node. The testMRR is
shown between parentheses in the legend. Compared with the single-GPU baseline, DistTGL withmemory parallelism 1×1×8
achieves near-linear converge speedup with negligible accuracy loss on 8 GPUs.

Datasets. Table 2 shows the statistics of the five datasets for the
evaluation. The task on each dataset is

• Wikipedia [10] is a bipartite user-internet page graphwhere
one graph event represents one usermodifies the oneWikipedia
page. The edge features are extracted from the text that the
users update the pages with. The task on this dataset is tem-
poral link prediction.

• Reddit [10] is a bipartite user-reddit graph where one graph
event represents one user posts to one sub-reddit. The edge
features are extracted from the text of the post. The task on
this dataset is temporal link prediction.

• MOOC [10] is a bipartite user-course action graph where
one graph event represents one user interacting with one
class item (i.e., watching a video, answering a question). The
task on this dataset is temporal link prediction.

• Flights [13] is a traffic graph where each node represents
one airport, and each edge represents one flight between
the two airports. The task on this dataset is temporal link
prediction.

• GDELT [30] is a knowledge graph tracking events happen-
ing all over the world where each node represents one actor,
and each edge represents one event. Since the temporal link
prediction task used in TGL [30] is too simple, we use the 130-
dimensional CAMEO code as edge features and set the task
to be a 56-class 6-label dynamic edge classification problem
that predicts the rest of the 56-dimensional edge features.

For the temporal link prediction task, to reduce the variance in
the validation and test accuracy, we randomly sample 49 negative
destination nodes (for bipartite graphs, we only sample from the
other graph partition) and report the Mean Reciprocal Rank (MRR)
of the true destination nodes. For the dynamic edge classification
task, we report the F1-Micro score.

4.0.1 Model. We use the most efficient one-layer TGN-attn [14]
model enhanced with the static node memory introduced in Sec-
tion 3.1. We follow the original work to set the dimension of node
memory to 100 and the number of most recent neighbors to 10 for
each node. We pre-train the static node history with the same GNN
architecture but only with static information using DGL [19]. On
the Wikipedia, Reddit, MOOC, and Flights datasets, we pre-train 10
epochs with stochastically selected mini-batches. On the GDELT
dataset, we only pre-train 1 epoch. The pre-training of all datasets
takes less than 30 seconds on a single machine. For the Wikipedia,
Reddit, MOOC, and Flights datasets, we set the local batch size to be
the largest available batch size 600 [30]. For the GDELT dataset, the
local batch size is set to 3200, limited by the GPU capacity. We set
the learning rate to be linear with the global batch size. To ensure
fairness, we keep the total number of traversed edges to be the
same in multi-GPU training. The number of training iterations for
𝑥 GPUs will be 1/𝑥 compared to a single GPU. On the Wikipedia,
Reddit, MOOC, and Flights datasets, we traverse the training events
100 times (100 epochs on a single GPU). On the larger GDELT
dataset, we traverse the training events 10 times (10 epochs on a
single GPU). On theWikipedia, Reddit, MOOC, and Flights datasets,
we perform evaluation after every training epoch using the node
memory in the first memory process. On the GDELT dataset, due to
the slow evaluation process (as DistTGL only accelerates training),
we perform validation and testing every 2000 training iterations on
a randomly selected chunk of 1000 consecutive mini-batches in the
validation and the test set, starting with all-zero node memory and
mails.

4.0.2 Hardware. All experiments are performed onAWS EC2 cloud
using g4dn.metal instances. Each instance has dual Intel Platinum
8259CL CPUs paired with 384GB ECC-DDR4 memory, 8 Nvidia T4
GPUs with 16GB GDDR6 memory for each GPU, two 900GB NVMe
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Figure 10: (a) Test MRR and (b) number of iterations before
convergencewith different epoch parallelism 𝑗 andmemory
parallelism 𝑘 on the Wikipedia dataset.

SSDs, and 100Gbps Ethernet connection. We create the instances in
the same group of rack to make sure the cross-machine latency is
minimized. We sample the mini-batch in advance and store them on
the two NVMe SSDs in RAID0 mode to maximize the throughput.
The positive edges in the mini-batches are reused in every epoch.
For the negative edges, we observe that in the temporal link predic-
tion task, a small number of groups of negative edges are enough.
So we prepare 10 groups of negative edges and randomly use them
in the total 100 epochs. We assign 6 CPU threads for each trainer
and memory process so that the total 96 physical threads can serve
the needs for maximum memory parallelism of 𝑘 = 8 on a single
machine. To further overlap the mini-batch generation with the
GPU computation, we pre-fetch the pre-sampled static information
from disks 𝑗 iterations in advance. However, the dynamic node
memory still needs to be obtained following the serialized order in
the memory process. For all methods, the node memory and cached
mails are stored in the main memory and transferred between CPU
and GPU in every training iteration.

4.1 Convergence
We first evaluate the convergence of DistTGL by comparing the
validation accuracy after different numbers of training iterations
and the testing accuracy for the final model.

We start with the performance of epoch parallelism on the
Wikipedia, Reddit, Flights, and MOOC datasets, as the largest batch
sizes on these datasets do not allow mini-batch parallelism. Fig-
ure 9(a) shows the convergence curves of applying 1 (as the base-
line), 2, 4, and 8 epoch parallelism. When 𝑗 = 2, we observe more
than 2× speedup for the number of training iterations before reach-
ing 70%, 80%, and 90% of the best validation accuracy on all four
datasets, especially on the Flights datasets where the final test ac-
curacy is even higher than the baseline. We believe that the super-
linear scalability is due to the larger global negative batch size,
where we observe similar convergence speed improvement when
we increase the number of negative samples during training for the
baseline. Unfortunately, increasing the number of negative samples
cannot be used to speedup the convergence as the computation
complexity is linear with the number of root nodes. When 𝑗 = 4,
epoch parallelism still manages to achieve linear speedup except
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Figure 11: Convergence of DistTGL on the GDELT datasets.
The test F1-Micro is shown between parentheses in the leg-
end.

on the Flights dataset with the most number of unique edges [13].
When 𝑗 = 8, epoch parallelism leads to significant test accuracy
drop and non-linear speedup. The sub-linear scalability for epoch
parallelism when 𝑗 is large is expected as it trains on the same posi-
tive nodes consecutively in multiple iterations, leading to increased
variance in the mini-batch gradients.

Then, on the same four datasets, we fix 𝑗 × 𝑘 = 8 and evaluate
the convergence with different memory parallelism. Figure 9(b)
shows the convergence curves of different epoch and memory
parallelism. Compared with epoch parallelism (1 × 8 × 1), memory
parallelism achieves both better validation accuracy and notably
better test accuracy due to better gradient estimation in each mini-
batch. In general, the larger the memory parallelism 𝑘 is, the better
the test MRR. The training configuration with the largest 𝑘 = 8
achieves linear speedup in convergence compared with the single
GPU baseline with only an average of 0.004 drop in test MRR.
Figure 10 shows the test MRR and the number of training iterations
to reach the best validationMRR of different training configurations
when 𝑖 = 1 and 𝑗 × 𝑘 ≤ 32. The experiment results agree with our
strategy for optimal training configuration, where we prioritize
memory parallelism over epoch parallelism within the hardware
limit.

For the GDELT dataset, we verify that the largest batch size
without accuracy loss is larger than the capacity of one machine
(see Figure 2(a)), which also agrees with previous work [30]. Hence
we follow our optimal training configuration choosing policy and
prioritize mini-batch parallelism. Figure 11 shows the convergence
of DistTGL on the GDELT datasets. The single GPU baseline 1×1×1
converges very slowly. Increasing the learning rate can speedup
the convergence to some extent but will also lower the accuracy.
By contrast, mini-batch parallelism 8 × 1 × 1 enjoys the benefit
of larger batch size and achieves super-linear speedup. To further
speedup on more trainers, we need to use memory parallelism to
solve the massive communication overhead across machines. On
multiple machines, the combination of memory parallelism and
mini-batch parallelism achieves satisfying convergence speedup
with the highest test accuracy. We also test the performance of
memory and epoch parallelism on the GDELT dataset. Memory
parallelism achieves similar convergence as mini-batch parallelism
while epoch parallelism has a slightly worse performance than the
other two.
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Figure 12: (a) Training throughput of DistTGL. We show the parallel training strategies with the best accuracy (memory paral-
lelism on the four small datasets andmini-batch parallelism on the two large datasets on each node) for each dataset. The bars
with red frame denote the optimal training configuration on different number of GPUs. (b) Training throughput per GPU of
DistTGL compared with TGN and TGL-TGN on the Wikipedia and GDELT datasets.

4.2 Training Throughput
We evaluate the training throughput of DistTGL on up to four 8-
GPU machines. We do not test on more machines as the training
time on the largest GDELT dataset is already less than 30 minutes
on four machines while it only takes a few minutes to train on
the smaller datasets. Figure 12(a) shows the training throughput
and the speedup compared with the single GPU baseline of the
optimal training configuration on 2, 4, and 8 GPUs on a single
machine, 16 GPUs on two machines, and 32 GPUs on four machines.
On 8/32 GPUs on 1/4 machines, DistTGL achieves close to linear
speedup averaging 7.27/25.08×, respectively. In terms of absolute
throughput, the training throughput on the Reddit and Flights
datasets is around 10% slower than the other datasets due to the
larger amount of writes to the node memory and cached mails.
Since DistTGL only applies memory parallelism across machines,
the memory operations are evenly distributed to each machine.
There is no cross-machine traffic besides the synchronization of
model weights, leading to a balanced workloads in each trainer. Due
to the small TGNN models with only a few megabytes of weights,
DistTGL also achieves near-linear speedup scaling on distributed
systems.

We also compare the performance of DistTGL with the vanilla
single GPU implementation TGN [14] and its optimized version
TGL-TGN [30] that supports single-machine multiple-GPU. Fig-
ure 12(b) shows the training throughput per GPU of the two base-
line methods and DistTGL in different training configurations on
the Wikipedia and GDELT datasets. On the GDELT dataset, TGN

does not finish training in 10 hours. DistTGL with the optimal train-
ing configurations (memory parallelism on the Wikipedia dataset
and a combination of mini-batch and memory parallelism on the
GDELT dataset) significantly outperform TGN and TGL. On 2, 4,
and 8 GPUs, DistTGL achieves an average of 1.24×, 1.91×, and 2.93×
improvement, respectively, compared with TGL. The 1×1×1 single
GPU implementation of DistTGL is also faster than TGL due to our
system optimization that overlaps the read and write operations
from and to node memory. On the GDELT dataset, memory paral-
lelism does not scale linearly on 8 GPUs due to the limitation of
the bandwidth between CPU and RAM, whereas the scalability is
notably better on multiple machines.

5 CONCLUSION
In this work, we propose DistTGL, an M-TGNN training framework
for large-scale distributed M-TGNN training. DistTGL addressed
the accuracy loss issue and communication overhead challenges by
adopting three improvements of an enhanced model, a novel train-
ing algorithm, and an optimized system. Compared with state-of-
the-art TGNN framework TGL [30], DistTGL not only outperforms
TGL both in convergence rate and training throughput on a single
machine but also extends M-TGNN training to distributed systems.
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