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ABSTRACT
With the development of 5G and IoT networks, Device-to-Device
(D2D) communication has become a major paradigm in wireless
communication. Most existing approaches for D2D resource allo-
cation are usually time consuming and demand a high computa-
tional budget, especially in heterogeneous deployments where the
D2D links have different configurations (i.e., different number of
transmit and receive antennas). Recently, Graph neural networks
(GNNs) have been proposed to solve many problems in the net-
working domain and have significantly outperformed traditional
algorithms, including throughput optimization problems in D2D
networks. However, existing throughput optimization works either
only apply to MISO or SISO D2D networks or require extremely
long runtime onMIMOD2D networks, whichmakes it hard to apply
them in real-world D2D applications. In this paper, we consider the
throughput prediction problem across a fixed association of trans-
mitters and receivers to maximize the total throughput in heteroge-
neous MIMO D2D networks. We model the interference between
different link types as heterogeneous edges and learn the optimal
beamforming policy using a heterogeneous GNN. Simulation results
show that our proposed GNN-based approach achieves a signifi-
cant speedup compared with the state-of-the-art algorithm, while
providing robust performance on large-scale synthetic datasets.

CCS CONCEPTS
• Networks → Network performance analysis.
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1 INTRODUCTION
Effective resource allocation plays a crucial role for performance
optimization in wireless networks. However, typical resource al-
location problems are non-convex and computationally challeng-
ing [9, 10, 13]. This is because the utility functions under practical
constraints are hard to optimize, especially when the number of
mutually interfering links is large. Since multiple antenna tech-
nologies play a key role in communication systems, solving the
beamforming and power control problem is crucial to achieving
optimal performance in massive multiple-input multiple-output
(MIMO) networks.

Great efforts have been put forward to approximate the classic
weighted minimum mean square error (WMMSE) algorithm [12]
for throughput optimization in terms of the weighted sum rate.
Shen et al. [7] extend fractional programming (FP) theory with the
goal of obtaining efficient suboptimal solutions to resource alloca-
tion problems in wireless communication networks. The iterative
algorithm involves complicated computations such as matrix inver-
sion in each iteration. Its high computational complexity makes it
infeasible to be deployed to real-time applications.

Inspired by recent successes inmachine learning (ML), researchers
have been applying ML-based methods to solve NP-hard optimiza-
tion problems in wireless networks [3, 5, 6]. In particular, traditional
ML models such as MLP and CNN have been used to approximate
the WMMSE algorithm. However, these approaches are not very ef-
fective at capturing complex network parameters such as topology
and channel state information (CSI). A shortcoming of these ML
models is the lack of scalability and generalization in large-scale
resource allocation problems. Although they are able to achieve
near-optimal performance for small-scale wireless networks, the
performance of these methods drop drastically as the network size
increases. This motivates the study of incorporating the structures
of wireless networks into neural network architecture.

Graph neural networks (GNNs) have shown strong capability in
exploiting non-Euclidean data, such as CSI. Therefore, GNN-based
approaches have been proposed for resource allocation problems in
D2D wireless networks [2, 4, 5, 10, 13]. However, these approaches
are limited to scenarios involving either only MISO or only SISO
links, limiting their applicability to real-world networks consisting
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of a mixture of SISO, MISO and MIMO links. Table 1 summarizes
the related work on the sum rate maximization problem. In the
Link Type column, heterogeneous means that the environmental
information (e.g., the number of transmit/receive antennas) may be
diverse, homogeneous otherwise. The supported antenna system is
indicated in parentheses.

We propose a GNN-based framework for the throughput opti-
mization problem in heterogeneous MIMO networks. We treat the
interference between different link types as heterogeneous edges,
and then learn the optimal structure using heterogeneous GNN
trained in an unsupervised manner.

The main contributions of this paper are:
• We extend the heterogeneous GNN-based framework for
MISO links (HIGNN [13]) to MIMO links, which is a more
general model in real-world scenarios.

• Experimental results show that our proposed model achieves
significant speedup compared with FP and sum rate improve-
ment over HIGNN.

The rest of this paper is organized as follows: Section 2 describes
the system model as well as the formulation of the beamforming
problem, and the graph representation for capturing the interfer-
ence relations between distinct links. Section 3 introduces our GNN-
based approach for the beamforming problem based on our graph
representation. Section 4 provides numerical results to validate
the performance of the proposed framework. Finally, Section 5
concludes the paper.

2 BACKGROUND
In this section, we formulate the throughput optimization beam-
forming problem in heterogeneous MIMO networks, and then de-
scribe how we model interference relations as a heterogeneous
graph.

2.1 Notations
We use lower case to denote scalars, bold lower case to denote
vectors, bold upper case to denote matrices, and Euler script to
denote sets. We use R to denote the set of real numbers, C to denote
the set of complex numbers, and I to denote the identity matrix.
For a matrixM, we useM−1 to denote its inverse andM† to denote
its matrix conjugate transpose.

2.2 Problem Definition
As illustrated in Fig 1, consider a heterogeneous MIMO network
with a set of transmitters J and a set of receivers I, in which
different links may have different features, e.g., varying number of
transmit/receive antennas.We assume that only one data stream per
link is supported. The throughput optimization problem considered
here is to design transmit beamformers for the data stream in each
active link.

Formally, suppose there are 𝑇 × 𝑅 types of links, denoted by
L = {ℓ𝑡,𝑟 : 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑟 ≤ 𝑅}, where the number of trans-
mit antennas is 𝑁𝑡 and the number of receive antennas is 𝑁𝑟 for
link type (𝑡, 𝑟 ). Let H𝑖ℓ, 𝑗 ∈ C𝑁𝑡×𝑁𝑟 be the channel response from
transmitter 𝑗 ∈ J to receiver 𝑖 ∈ I on link type ℓ . We assume that
the channel state information (CSI) is completely known. Let 𝜎2
denote the variance of the additive white Gaussian noise (AWGN).

Introduce variable x𝑖ℓ ∈ C𝑁𝑡 as the beamformer at transmitter 𝑖 of
type ℓ . The data rate to a receiver 𝑗 ∈ J of type ℓ is computed as
follows:

𝑅𝑖ℓ (X) = log
(
1 + x†

𝑖ℓ
H†
𝑖ℓ,𝑖

S−1𝑖ℓ H𝑖ℓ,𝑖x𝑖ℓ
)
, (1)

where

S𝑖ℓ = 𝜎2I +
∑︁

( 𝑗,ℓ ′ )≠(𝑖,ℓ )
H𝑖ℓ, 𝑗x𝑗 ℓ ′x

†
𝑗 ℓ ′H

†
𝑖ℓ, 𝑗

. (2)

We use the weighted sum rate as the utility function in our opti-
mal beamforming, where the weights account for fairness. Math-
ematically, given non-negative weights 𝑤𝑖ℓ ≥ 0 indicating the
priority of link 𝑖ℓ and the power constraint 𝑃max, the throughput
optimization problem can be formulated as

max
X

∑︁
𝑖,ℓ

𝑤𝑖ℓ𝑅𝑖ℓ (X)

subject to ∥𝑥𝑖ℓ ∥22 ≤ 𝑃max, ∀ 𝑖, ℓ .
(3)

The problem is nonconvex with vector variables and computa-
tionally challenging. In particular, on SISO networks, the beam-
forming design degrades to a power control problem.

2.3 Graph Representation

𝑇1

𝑅1

Type 1

𝑇2

𝑅2

Type 1

𝑇3 𝑅3
Type 2

𝑇4 𝑅4
Type 3

Communication link

Interference link

Figure 1: An example of a heterogeneous MIMO network
with three types of links.

We describe how to model the interference relations between
different types of links using heterogeneous graphs for throughput
maximization in heterogeneous MIMO networks. The relational
modeling is similar to that in [13].

The wireless network is modeled as a heterogeneous graph 𝐺 =

(𝑉 , 𝐸, 𝑅), where each communication link is regarded as a node
𝑣 ∈ 𝑉 , each interference link is regarded as an edge 𝑒 ∈ 𝐸, and
relations 𝑟 ∈ 𝑅 are adopted to identify node types associated with
edges. Figure 2 illustrates the heterogeneous graph for the network
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Table 1: List of the papers in the wirless network

Year Problem Link Type Solution Paper
2011 Beamforming Heterogeneous (MIMO) WMMSE Shi et al. [12]
2018 Power Control and Beamforming Heterogeneous (MIMO) Fractional Programming Shen et al. [7]
2019 Link Scheduling Homogeneous (SISO) CNN Cui et al. [3]
2019 Power Control Homogeneous (SISO) GCN Shen et al. [10]
2020 Power Allocation Homogeneous (MISO) REGNN Eisen et al. [4]
2021 Link Scheduling Homogeneous (SISO) Graph Embedding Lee et al. [5]
2021 Power Allocation Homogeneous (SISO) UWMMSE Chowdhury et al. [2]
2021 Power Control and Beamforming Heterogeneous (MISO) HIGNN Zhang et al. [13]
2021 Power Control and Beamforming Homogeneous (MIMO) UWMMSE Chowdhury et al. [1]
2022 Power Control and Beamforming Heterogeneous (MIMO) GNN Ours
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31
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Figure 2: A heterogeneous graph modeling the interference
relation in Fig. 1.

in Figure 1. The node features of vertex 𝑖 and edge features e𝑖 𝑗 of
edge (𝑖, 𝑗) depend on the channel gains between the two nodes of
the corresponding communication/interference links.

Let N𝑖 = { 𝑗 ∈ 𝑉 | ( 𝑗, 𝑖) ∈ 𝐸} be the neighbor set of vertex 𝑖 .
Attributes of each vertex 𝑖 and edge (𝑖, 𝑗) are characterized by v𝑖 and
e𝑖 𝑗 . Denote the 𝑖-th vertex of type ℓ by 𝑖ℓ , whose incident neighbor
nodes under relation 𝑟 = (ℓ′, ℓ) is N (ℓ ′ )

𝑖ℓ
= { 𝑗 | ( 𝑗ℓ ′ , 𝑖ℓ ) ∈ 𝐸}. Node

features are held by V = {Vℓ }ℓ , where ℓ specifies node types and
[Vℓ ]𝑖 = v𝑖ℓ . Edge features are collected in E = {Eℓℓ ′ }ℓ,ℓ ′ , where
[Eℓℓ ′ ]𝑖 𝑗 = e𝑖ℓ 𝑗ℓ ′ if edge (𝑖ℓ , 𝑗ℓ ′ ) exists and 0 otherwise.

In summary, we model each communication link as a vertex and
each interference link as an edge. Attributes of each vertex include
the weight and direct channel response. Edge features consist of
the channel response from the interference links. Note that the size
of the node/edge features may vary since there are different link
types having distinct number of transmit and receive antennas.

3 METHODOLOGY
In this section, we develop an efficient GNN-based framework for
general resource allocation problems in heterogeneous MIMO net-
works. We first introduce heterogeneous GNNs and then discuss
the design of the learning framework for optimal beamforming.

3.1 Graph Neural Network
We introduce a GNN-based framework to solve the optimal beam-
forming in heterogeneous MIMO networks, by employing the het-
erogeneous GNN proposed in [13]. To find a policy 𝑓 that maps
the heterogeneous graph 𝐺 built in Section 2.3 to estimate the
beamforming vectors X, we parameterize the policy by a learn-
able parameter \\\ as 𝑓\\\ , the estimate of the beamforming vectors is
X̂ = 𝑓\\\ (𝐺).

GNNs iteratively update the representation of each node by
aggregation and combination operations. The update rule is given
as follows:

𝛼
(𝑘 )
𝑣 = AGGREGATE(𝑘 )

({
𝛽
(𝑘−1)
𝑢 : 𝑢 ∈ N (𝑣)

})
(4)

𝛽
(𝑘 )
𝑣 = COMBINE(𝑘 )

(
𝛽
(𝑘−1)
𝑣 , 𝛼

(𝑘 )
𝑣

)
(5)

where 𝛼 (𝑘 )
𝑣 denotes the feature aggregated by node 𝑣 from its neigh-

bors at layer 𝑘 . 𝛽 (𝑘 )𝑣 represents the feature vector of the node 𝑣 at
layer 𝑘 .

The neighborhood aggregation is expected to capture the permu-
tation invariance property of the interference channel, which can
be achieved by a permutation-invariant operation (e.g., sum, mean,
and maximum). Since dimensions of edge features change with
antenna numbers, these features from different relations should
be treated separately, as suggested in [13]. Therefore, we assign
each relation 𝑟 = (ℓ′, ℓ) individual update functions 𝜙𝑣𝑟 and 𝜙𝑒𝑟 ,
parametrized by multi-layer perceptrons (MLPs).

e(𝑘 )
𝑗ℓ ′ 𝑖ℓ

= 𝜙𝑒(ℓ ′,ℓ )

(
v(𝑘−1)
𝑗ℓ ′

, e(0)
𝑗ℓ ′ 𝑖ℓ

)
, (6)

v(𝑘 )
ℓ ′,𝑖ℓ

= 𝜙𝑣(ℓ ′,ℓ )
©«v(𝑘−1)𝑖ℓ

, max
𝑗∈N (ℓ ′ )

𝑖ℓ

e(𝑘 )
𝑗ℓ ′ 𝑖ℓ

ª®¬ . (7)

Here initial edge attributes e(0)
𝑗ℓ ′ 𝑖ℓ

are kept in all steps of edge
update. This helps to stabilize training performance [13].
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The per-relation updates {v(𝑘 )
ℓ ′,𝑖ℓ

}ℓ ′ are merged to get the final

vertex update v(𝑘 )
𝑖ℓ

as

v(𝑘 )
𝑖ℓ

=
1
𝑐𝑖,ℓ

𝑐𝑖,ℓ∑︁
ℓ ′=1

v(𝑘 )
ℓ ′,𝑖ℓ

, (8)

where 𝑐𝑖,ℓ is the number of relations involved in updating v(𝑘 )
𝑖ℓ

.
During forward computation, each vertex takes its attributes as

the initial input, and then a fixed number of updates are executed
to obtain the beamforming vector. The power constraint is imposed
by the activation function 𝛾 (x) =

√
𝑃maxx

max{ ∥x∥2,1} .
The loss function is the negative expectation of the weighted

sum rate over different channel responses:

−EH

[∑︁
𝑖,ℓ

𝑤𝑖ℓ log
(
1 + x†

𝑖ℓ
H†
𝑖ℓ,𝑖

𝑆−1𝑖ℓ H𝑖ℓ,𝑖x𝑖ℓ
)]

. (9)

Backpropagation of Eq. 9 is done by updating the learnable pa-
rameter \\\ of the GNN in an unsupervised manner.

We identify the ability of a policy to be implemented on varying
network topologies. Recall that X is the collection of the beamform-
ers, V and E are the node and edge features of the corresponding
heterogeneous graph. Then the permutation invariance of utility
function 𝐹 implies that the following holds for any permutation
operator 𝜋

𝐹 (𝜋 ◦ X, 𝜋 ◦ V, 𝜋 ◦ E) = 𝐹 (X,V, E) .
The permutation equivariance of the policy 𝑓\ by GNN can be
formulated as

𝜋 ◦ X = 𝑓\ (𝜋 ◦ V, 𝜋 ◦ E),
Therefore, the permutation of vertices doesn’t affect the outputs
of GNNs. Compared to traditional ML-based algorithms and other
neural networks such as CNNs, these properties suggest that GNNs
are able to generalize to heterogeneous networks of various sizes
and distinct scenarios.

3.2 Complexity Analysis
Assume that the total number of links in the network is 𝐿. Let
𝑁 = max{𝑁𝑡 , 𝑁𝑟 }1≤𝑡≤𝑇,1≤𝑟≤𝑅 .

Greedy: The greedy algorithm makes decisions for each link
sequentially. When deciding whether to schedule the 𝑖-th link, it
compares the sum rate of all links that have been scheduled so far,
with and without activating the new link. The re-computation of
the interference costs 𝑂 (𝑖) computations. The overall complexity
of the greedy algorithm is 𝑂 (1 + · · · + 𝐿) = 𝑂 (𝐿2).

GNN: Since the GNN-based models only require forward com-
putation, the computational complexity is asymptotically the same
as that of the Greedy: 𝑂 (𝐿2).

FP: As analyzed in [8, 9], the update step of FP has a per-iteration
computational complexity of 𝑂 (𝑁 4𝐿2) and the matching step has
a computational complexity of 𝑂 (𝐿2 log𝐿). This is due to the fact
that in beamforming design, bisection search is performed in each
iteration of FP. It is noted that the computational complexity of
FP is sensitive to the number of transmit/receive antennas. It is
asymptotically higher than those of the Greedy and GNN-based
approaches.

The main advantage of our proposed GNN-based framework
is that it is able to reduce the computational complexity while
achieving near-optimal performance compared to FP.

4 EXPERIMENTS
In this section, we describe the simulation setting for dataset genera-
tion and providemodel details, followed by experimental results and
computational analysis. The implementation is based on HIGNN
using deep graph library (DGL) with PyTorch backend [13].

4.1 Setup
We simulate a heterogeneous MIMO network where all links share
the same bandwidth. All transmitters and receivers are uniformly
distributed in a square area of length 𝐷 . We consider 16 types
of links: SISO links, 𝑁𝑡 × 1 MISO links, 1 × 𝑁𝑟 SIMO links, and
𝑁𝑡 × 𝑁𝑟 MIMO links, where 𝑁𝑡 , 𝑁𝑟 ∈ [2, 4, 8]. The communica-
tion range of each link is set between 2𝑚 and 50𝑚. We determine
path loss and shadowing in large-scale fading using the scaled
distance-dependent model in [11]. Channel response is computed
by multiplying the square root of the large-scale fading component
with the small-scale fading component, where the latter is simulated
by i.i.d. zero-mean complex Gaussian variables with unit variance.
The noise variance at receiver and trainsmit power budget are nor-
malized to 1. The system parameters are summarized in Table 2.
During the generation of channel instances for training, numbers
of all 16 types of links are all set to 4. Since channel responses are
complex matrices, as implemented in [13], we separately feed the
real part and the imaginary part of the channel responses H to NN
modules after normalization.

Table 2: System Parameters

Parameter Value
Square area of length, 𝐷 1000 m

Pairwise distance, 𝑑min − 𝑑max 2 − 50 m
Bandwidth, 𝐵 5MHz

4.1.1 Baselines. For performance evaluation of our GNN model,
we compare with the following baseline approaches.

• HIGNN [13]: uses message passing neural network in a het-
erogeneous MISO network with two types of links that hold
different features (i.e., SISO and MISO links).

• Greedy: sorts all the links according to the channel response
and schedules the links one by one. A link is chosen to be
active only if that increases the sum rate.

• Fractional Programming (FP) [7]: develops iteratively closed-
form updates using fractional programming to optimize
throughput.

4.2 Performance Comparison
We evaluate the performance of our GNN model as follows: we
generate the synthetic dataset of multiple types of links under
MIMO settings as described in Section 4.1. As a sanity check, we
also conduct experiments under two scenarios: 1) SISO links only,
and 2) SISO and MISO links. These scenarios are reduced from the
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Figure 3: Sum Rate for heterogeneous MIMO networks (HIGNN: only SISO & MISO).

MIMO settings under the same deployment. For example, in the
second scenario (SISO and MISO), all 𝑁𝑡 × 𝑁𝑟 MIMO links reduce
to 𝑁𝑡 × 1MISO links and all 1×𝑁𝑟 SIMO links reduce to SISO links.
The simulation results are shown in Table 3. Note that we only test
HIGNN and our proposed GNN-based framework under the most
general antenna systems (i.e., a mixture of SISO & MISO links and
all link types specified in Section 4.1, respectively).

It is seen that our proposed GNN-based approach is able to
achieve an average of 88.9% of the weighted sum rate produced
by the FP algorithm, while significantly outperforming the greedy
algorithm in terms of the weighted sum rate. Therefore, our GNN-
based approach is capable of handling interference relations in
heterogeneous MIMO networks.

Table 3: Sum Rate (Bits/Hz) Under Different Scenarios

Scenario Greedy FP HIGNN Ours
SISO 19.83 46.93 - -

SISO & MISO 23.87 87.40 81.82 -
ALL 35.92 186.65 - 165.79

Fig 3 illustrates the sum rate achieved by our GNNmodel and the
benchmarks with respect to different antenna systems under the
same deployment. Compared to HIGNN, our GNN model achieves
similar performance on SISO and MISO links, with significant im-
provement on SIMO and MIMO links, especially as the number of
antennas increases.

4.3 Running Time Performance
Compared to iterative algorithms, one advantage of GNN-based
methods is the reduction in execution time. Therefore, we eval-
uate the running time performance of our GNN models and the
FP algorithm to examine the computational complexity of these

approaches. As shown in [13], GNN-based methods implemented
in an unsupervised manner are robust to the number of antennas.

We compare the running time for FP and GNN-based approaches
under the system settings in Section 4.2, as shown in Table 4. Note
that as in Section 4.2, we only test HIGNN and our proposed GNN-
based framework under a mixture of SISO & MISO links and all
link types specified in Section 4.1. The running time of FP grows
significantly with the problem size, while those of the GNN-based
approaches remain relatively small in magnitude. Therefore, our
GNN-based framework is significantly faster than FP. This is be-
cause FP involves many iterations and has a much higher computa-
tional complexity (see Section 3.2). Based on the runtime results,
both our GNN-based framework and HIGNN are fast and practical
in real-world scenarios.

Table 4: Running Time (s) Under Different Scenarios

Scenario FP HIGNN Ours
SISO 12.74 - -

SISO & MISO 13.65 0.0357 -
All 34.37 - 0.0691

5 CONCLUSION
We developed an unsupervised learning-based framework for sum
rate maximization in heterogeneous MIMO networks based on a
heterogeneous GNN-based framework, which could capture inter-
ference in complex real-world wireless communication networks.
For future work, we will investigate the possibility of designing
a parameter sharing scheme for heterogeneous GNN, since there
are multiple link types which share similar structure. This could
significantly reduce the number of parameters and thus network
complexity. We also plan to explore the optimal beamforming struc-
tures in a more general setting, for example, the flexible association
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model in [9] that allows flexibility among multiple possible associ-
ations between transmitters and receivers.
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